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CS 61C: Great Ideas in 
Computer Architecture

Dependability:
Parity, RAID, ECC



Review of Last Lecture

• MapReduce Data Level Parallelism
– Framework to divide up data to be processed in 

parallel
– Handles worker failure and laggard jobs 

automatically
– Mapper outputs intermediate (key, value) pairs
– Optional Combiner in-between for better load 

balancing
– Reducer “combines” intermediate values with 

same key
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Agenda

• Dependability
• Administrivia
• RAID
• Error Correcting Codes 
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Six Great Ideas in 
Computer Architecture

1. Layers of Representation/Interpretation

2. Technology Trends

3. Principle of Locality/Memory Hierarchy

4. Parallelism

5. Performance Measurement & 

Improvement

6. Dependability via Redundancy

8/07/2014 Summer 2014 -- Lecture #27 4



Great Idea #6: Dependability 
via Redundancy

• Redundancy so that a failing piece 
doesn’t make the whole system fail
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1+1=2 1+1=2 1+1=1

1+1=2

FAIL!

2 of 3 agree



Great Idea #6: Dependability 
via Redundancy

• Applies to everything from datacenters to memory
– Redundant datacenters so that can lose 1 datacenter but 

Internet service stays online
– Redundant routes so can lose nodes but Internet doesn’t 

fail
– Redundant disks so that can lose 1 disk but not lose data 

(Redundant Arrays of Independent Disks/RAID)
– Redundant memory bits of so that can lose 1 bit but no 

data (Error Correcting Code/ECC Memory)
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Dependability

• Fault: failure of a 
component

– May or may not 
lead to system 
failure

– Applies to any 
part of the 
system
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Service accomplishment
Service delivered

as specified

Service interruption
Deviation from

specified service

FailureRestoration



Dependability Measures

• Reliability:  Mean Time To Failure (MTTF)
• Service interruption:  Mean Time To Repair (MTTR)
• Mean Time Between Failures (MTBF)

– MTBF = MTTR + MTTF

• Availability = MTTF / (MTTF + MTTR) = MTTF / MTBF

• Improving Availability
– Increase MTTF:  more reliable HW/SW + fault tolerance
– Reduce MTTR:  improved tools and processes for diagnosis 

and repair
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Reliability Measures

1) MTTF, MTBF measured in hours/failure
– e.g. average MTTF is 100,000 hr/failure

2) Annualized Failure Rate (AFR)
– Average rate of failures per year (%)

–  
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Total disk 
failures/yr



Availability Measures

• Availability = MTTF / (MTTF + MTTR) usually written as 
a percentage (%)

• Common jargon “number of 9s of availability per year” 
(more is better)

– 1 nine: 90% =>36 days of repair/year
– 2 nines: 99% =>3.6 days of repair/year
– 3 nines: 99.9% =>526 min of repair/year
– 4 nines: 99.99% =>53 min of repair/year
– 5 nines: 99.999% =>5 min of repair/year
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Dependability Example

• 1000 disks with MTTF = 100,000 hr and 
MTTR = 100 hr

– MTBF = MTTR + MTTF = 100,100 hr
– Availability = MTTF/MTBF = 0.9990 = 

99.9%
●  3 nines of availability!

– AFR = 8760/MTTF = 0.0876 = 8.76%

• Faster repair to get 4 nines of availability?
– 0.0001×MTTF = 0.9999×MTTR
– MTTR = 10.001 hr
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Dependability Design 
Principle

• No single points of failure
– “Chain is only as strong as its weakest 

link”

• Dependability Corollary of Amdahl’s Law
– Doesn’t matter how dependable you make 

one portion of system
– Dependability limited by part you do not 

improve
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Question:  There’s a hardware glitch in our 
system that makes the Mean Time To Failure 
(MTTF) decrease.  Are the following statements 
TRUE or FALSE?

1) Our system’s Availability will increase.

2) Our system’s Annualized Failure Rate (AFR) will 
increase.

F F(B)
F T(G)
T F(P)
T T(Y)

1 2

13



Agenda

• Dependability
• Administrivia
• RAID
• Error Correcting Codes 
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Administrivia

• Project 3 (partners) due Sun 8/10 
• Final Review – Sat 8/09, 2‐5pm in 

2060 VLSB
• Final – Fri 8/15, 9am‐12pm, 155 

Dwinelle 
– MIPS Green Sheet provided again 
– Two two‐sided handwritten cheat sheets

● Can re-use your midterm cheat sheet!
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Agenda

• Dependability
• Administrivia
• RAID
• Error Correcting Codes 
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Can smaller disks be used  to close the gap in 
performance between disks and CPUs?

Arrays of Small Disks
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14”10”5.25”3.5”

3.5”

Disk Array:    
1 disk type

Conventional:
4 disk types

Low End     High End



Replace Large Disks with Large 
Number of Small Disks!
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Capacity
Volume

Power
Data Rate

I/O Rate
MTTF
Cost

IBM 3390K
20 GBytes
97 cu. ft.
3 KW
15 MB/s
600 I/Os/s
250 KHrs
$250K

IBM 3.5" 0061
320 MBytes
0.1 cu. ft.
11 W
1.5 MB/s
55 I/Os/s
50 KHrs
$2K

x72
23 GBytes
11 cu. ft.
1 KW
120 MB/s
3900 IOs/s
??? Hrs
$150K

Disk Arrays have potential for large data and I/O rates, high 
MB/ft3, high MB/KW, but what about reliability?

9X

3X
8X
6X

(Data from 1988 disks)

~700 Hrs



RAID: Redundant Arrays of 
Inexpensive Disks

• Files are “striped” across multiple disks
– Concurrent disk accesses improve throughput

• Redundancy yields high data availability
– Service still provided to user, even if some 

components (disks) fail

• Contents reconstructed from data   
redundantly stored in the array

– Capacity penalty to store redundant info
– Bandwidth penalty to update redundant info
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RAID 0: Data Striping

• “Stripe” data across all disks
– Generally faster accesses (access disks in parallel)
– No redundancy (really “AID”)
– Bit-striping shown here, can do in larger chunks
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10010011
11001101

…

logical record

1
0
1
1

0
0
1
1

1
1
0
1

0
1
0
0

striped
physical
records



RAID 1: Disk Mirroring

• Each disk is fully duplicated onto its “mirror”
– Very high availability can be achieved

• Bandwidth sacrifice on write:
– Logical write = two physical writes
– Logical read = one physical read

• Most expensive solution: 100% capacity 
overhead
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recovery
group



Parity Bit

• Describes whether a group of bits contains an 
even or odd number of 1’s

– Define 1 = odd and 0 = even
– Can use XOR to compute parity bit!

• Adding the parity bit to a group will always result 
in an even number of 1’s (“even parity”)

– 100 Parity: 1,  101 Parity: 0

• If we know number of 1’s must be even, can we 
figure out what a single missing bit should be?

– 10?11 → missing bit is 1
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RAID 3: Parity Disk
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P0-2
P3-5
P6-8

P• Logical data is byte-
striped across disks

• Parity disk P contains
parity bytes of other disks

• If any one disk fails, can
use other disks to recover data!

● We have to know which disk failed

• Must update Parity data on EVERY write
● Logical write = min 2 to max N physical reads and writes

paritynew = dataold 𐌈 datanew 𐌈 parityold

X Y Z

D0
D3
D6

D2
D4
D7

D3
D5
D8



Updating the Parity Data

• Examine small write in RAID 3 (1 byte)
– 1 logical write = 2 physical reads + 2 physical writes
– Same concept applies for later RAIDs, too
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D0 D1 D2 D3 P

D0’
new
data +

old data
(1. Read)

XOR

1 only if bit 
changed

old parity
(2. Read)

flip if changed+
XOR

D0’ D0 P P’
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

1

0

1

0

0

1 D0’ D1 D2 D3(3. Write) P (4. Write)
P’

What if writing 
halfword (2 B)?

Word (4 B)?



RAID 4: Higher I/O Rate
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• Logical data is now block-striped across disks
• Parity disk P contains all parity blocks of other 

disks
• Because blocks are large, can handle small 

reads in parallel
● Must be blocks in different disks

• Still must update Parity data on EVERY write
● Logical write = min 2 to max N physical reads and 

writes
● Performs poorly on small writes
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D0 D1 D2 D3 P

D4 D5 D6 PD7

D8 D9 PD10 D11

D12 PD13 D14 D15

PD16 D17 D18 D19

D20 D21 D22 D23 P

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Disk Columns

Increasing
Logical
Disk
Address

Stripe

Insides of 5 
disks
Insides of 5 
disks

Example: 
small read D0 
& D5, large 
write D12-D15

Example: 
small read D0 
& D5, large 
write D12-D15

RAID 4: Higher I/O Rate



Inspiration for RAID 5

• When writing to a disk, need to update 
Parity 

• Small writes are bottlenecked by Parity 
Disk: Write to D0, D5 both also write to P 
disk 
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D0 D1 D2 D3 P

D4 D5 D6 PD7



RAID 5: Interleaved Parity
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Independent 
writes
possible 
because of
interleaved 
parity

Independent 
writes
possible 
because of
interleaved 
parity

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
Disk Columns

Increasing
Logical
Disk 
Addresses

Example: 
write to D0, 
D5 uses disks 
0, 1, 3, 4



Agenda

• Dependability
• Administrivia
• RAID
• Error Correcting Codes 
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Error Detection/Correction Codes

• Memory systems generate errors 
(accidentally flipped-bits)

– DRAMs store very little charge per bit
– “Hard” errors occur when chips 

permanently fail
– “Soft” errors occur occasionally when cells 

are struck by alpha particles or other 
environmental upsets

– Problem gets worse as memories get 
denser and larger
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Error Detection/Correction Codes

• Protect against errors with EDC/ECC
• Extra bits are added to each M-bit data 

chunk to produce an N-bit “code word”
– Extra bits are a function of the data
– Each data word value is mapped to a valid 

code word
– Certain errors change valid code words to 

invalid ones (i.e. can tell something is 
wrong)
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Space of all possible bit patterns:

Detecting/Correcting Code Concept

• Detection:  fails code word validity check
• Correction:  can map to nearest valid code word
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2N patterns, but only 2M are valid code words

Error changes bit pattern to 
an invalid code word.



Hamming Distance

• Hamming distance = # of bit changes to get 
from one code word to another

● p = 011011, 
q = 001111, Hdist(p,q) = 2

● p = 011011, 
q = 110001, Hdist(p,q) = ?

• If all code words are valid, then
min Hdist between valid code words is 1

– Change one bit, at another valid code word
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Richard Hamming (1915-98)
Turing Award Winner 

3



3-Bit Visualization Aid

• Want to be able to see Hamming distances
– Show code words as nodes, Hdist of 1 as edges

• For 3 bits, show each bit in a different 
dimension:

8/07/2014 Summer 2014 -- Lecture #27 34

Bit 0

Bit 1
Bit 2



Minimum Hamming Distance 2
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Let 
000 be 
valid

• If 1-bit error, is code word still valid?
● No!  So can detect

• If 1-bit error, know which code word we came from?
● No!  Equidistant, so cannot correct

Half the available
code words

are valid



Minimum Hamming Distance 3
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Let 000 
be valid

• How many bit errors can we detect?
● Two!  Takes 3 errors to reach another valid code word

• If 1-bit error, know which code word we came from?
● Yes!

Only a quarter of 
the available code

words are valid

Nearest 000
(one 1)

Nearest 111
(one 0)



Parity: Simple Error Detection 
Coding

Add parity bit when writing 
block of data:

Check parity on block read:
– Error if odd number of 1s
– Valid otherwise
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• Minimum Hamming distance of parity code is 2
• Parity of code word = 1 indicates an error occurred:

● 2-bit errors not detected (nor any even # of errors)
● Detects an odd # of errors

b7b6b5b4b3b2b1b0p

𐌈

b7b6b5b4b3b2b1b0p

error

𐌈



Parity Examples

1) Data 0101 0101
– 4 ones, even parity 

now
– Write to memory

0101 0101 0 
to keep parity even

2) Data 0101 0111
– 5 ones, odd parity now
– Write to memory:

0101 0111 1
to make parity even

3) Read from memory
0101 0101 0

– 4 ones → even parity, 
so no error

4) Read from memory
1101 0101 0

– 5 ones → odd parity, 
so error

5) What if error in parity 
bit?

– Can detect!
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Technology Break

Summer 2014 -- Lecture #27 39398/07/2014



Agenda

• Dependability
• Administrivia
• RAID
• Error Correcting Codes (Cont.)
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How to Correct 1-bit Error?

• Recall:  Minimum distance for 
correction?

– Three

• Richard Hamming came up with a 
mapping to allow Error Correction at 
min distance of 3 

– Called Hamming ECC for Error 
Correction Code
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Hamming ECC (1/2)

• Use extra parity bits to allow the position 
identification of a single error

– Interleave parity bits within bits of data to 
form code word

– Note:  Number bits starting at 1 from the left

1) Use all bit positions in the code word that are 
powers of 2 for parity bits (1, 2, 4, 8, 16,  …) 

2) All other bit positions are for the data bits
(3, 5, 6, 7, 9, 10, …)
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Hamming ECC (2/2)

3) Set each parity bit to create even parity for a 
group of the bits in the code word 
– The position of each parity bit determines the 

group of bits that it checks
– Parity bit p checks every bit whose position 

number in binary has a 1 in the bit position 
corresponding to p

● Bit 1 (00012) checks bits 1,3,5,7, … (XXX12)
● Bit 2 (00102) checks bits 2,3,6,7, … (XX1X2)
● Bit 4 (01002) checks bits 4-7, 12-15, … (X1XX2) 
● Bit 8 (10002) checks bits 8-15, 24-31, … (1XXX2)
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Hamming ECC Example (1/3)

• A byte of data: 10011010
• Create the code word, leaving 

spaces for the parity bits: 
_1 _2 13 _4 05 06 17 _8 19 010 111 012
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Hamming ECC Example (2/3)

• Calculate the parity bits:
– Parity bit 1 group (1, 3, 5, 7, 9, 11): 

? _ 1 _ 0 0 1 _ 1 0 1 0  →  
– Parity bit 2 group (2, 3, 6, 7, 10, 11):

0 ? 1 _ 0 0 1 _ 1 0 1 0  →  
– Parity bit 4 group (4, 5, 6, 7, 12):

0 1 1 ? 0 0 1 _ 1 0 1 0  →  
– Parity bit 8 group (8, 9, 10, 11, 12):

0 1 1 1 0 0 1 ? 1 0 1 0  →  
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0

1

0

1



Hamming ECC Example (3/3)

• Valid code word: 011100101010
• Recover original data: 011100101010

Suppose we see 011213140506170819110111012 
instead – fix the error!
• Check each parity group

– Parity bits 2 and 8 are incorrect
– As 2+8=10, bit position 10 is the bad bit, 

so flip it!

• Corrected value:  011100101010

8/07/2014 Summer 2014 -- Lecture #27 46



Hamming ECC “Cost”

• Space overhead in single error correction code
– Form p + d bit code word, where p = # parity bits 

and d = # data bits

• Want the p parity bits to indicate either “no error” 
or 1-bit error in one of the p + d places

– Need 2p ≥ p + d + 1, thus p ≥ log2(p + d + 1)

– For large d, p approaches log2(d)

• Example:  d = 8  → p = ⌈log2(p+8+1)⌉ → p = 4
– d = 16 → p = 5; d = 32 → p = 6; d = 64 → p = 7
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Hamming Single Error Correction, 
Double Error Detection (SEC/DED)

• Adding extra parity bit covering the entire SEC code 
word provides double error detection as well!

1   2    3    4     5    6   7    8
         p1  p2   d1   p3   d2   d3  d4   p4

• Let H be the position of the incorrect bit we would 
find from checking p1, p2, and p3 (0 means no error) 
and let P be parity of complete code word

– H=0 P=0, no error
– H≠0 P=1, correctable single error (p4=1 → odd # errors)

– H≠0 P=0, double error detected (p4=0 → even # errors)

– H=0 P=1, an error occurred in p4 bit, not in rest of word
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SEC/DED:  Hamming Distance 4
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1-bit error (one 1)
Nearest 0000

1-bit error (one 0)
Nearest 1111

2-bit error 
(two 0’s, two 1’s)
halfway between



Modern Use of RAID and ECC (1/2)

● Typical modern code words in DRAM memory systems:
● 64 bit data blocks (8 B) with 72 bit codewords (9 B)
● D = 64 → p = 7, +1 for DED

● RAID 6: Recovering from two disk failures!
● RAID 5 with an extra disk’s amount of parity blocks (also 

interleaved)
● Extra parity computation more complicated than Double 

Error Detection (not covered here)
● When useful?

● Operator replaces wrong disk during a failure
● Disk bandwidth is growing more slowly than disk capacity, so 

MTTR a disk in a RAID system is increasing (increases the 
chances of a 2nd  failure during repair)
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Modern Use of RAID and ECC (2/2)

• Common failure mode is bursts of bit errors, 
not just 1 or 2

– Network transmissions, disks, distributed 
storage

– Contiguous sequence of bits in which first, 
last, or any number of intermediate bits are in 
error

– Caused by impulse noise or by fading signal 
strength; effect is greater at higher data rates

• Other tools:  cyclic redundancy check, 
Reed-Solomon, other linear codes
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Summary

• Great Idea:  Dependability via Redundancy
– Reliability: MTTF & Annual Failure Rate
– Availability: % uptime = MTTF/MTBF

• RAID: Redundant Arrays of Inexpensive Disks
– Improve I/O rate while ensuring dependability
– http://www.accs.com/p_and_p/RAID/BasicRAID.html

• Memory Errors: 
– Hamming distance 2: Parity for Single Error Detect
– Hamming distance 3: Single Error Correction Code 

+ encode bit position of error
– Hamming distance 4: SEC/Double Error Detection

8/07/2014 Summer 2014 -- Lecture #27 52

http://www.accs.com/p_and_p/RAID/BasicRAID.html
http://www.accs.com/p_and_p/RAID/BasicRAID.html
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