CS 61C: Great Ideas in Computer
Architecture

Lecture 19: Thread-Level Parallelism and
OpenMP Intro

Instructor: Sagar Karandikar
sagark@eecs.berkeley.edu

http://inst.eecs.berkeley.edu/~cs61c
Berkeley EE

7/21/15

Review

¥ Amdahl’s Law: Serial sections limit speedup
¥ Flynn Taxonomy
¥ Intel SSE SIMD Instructions

D Exploit data-level parallelism in loops

B One instruction fetch that operates on multiple
operands simultaneously

B 128-bit XMM registers
¥ SSE Instructions in C

B Embed the SSE machine instructions directly into C
programs through use of intrinsics

B Achieve efficiency beyond that of optimizing compiler

New-School Machine Structures
(It’s a bit more complicated!)

Software Hardware
¥ Parallel Requests N
Assigned to computer Warel Socl;ﬁ:

e.g., Search “Katz” Computer
TR s T

¥ Parallel Threads p chojiom &

Assigned to core Achidve High

e.g., Lookup, Ads Perfdrmance e ~

¥ Parallel Instructions

Core-~ Core % N\
>1instruction @ one time Memory ,/’/(Cache) ; Préi\ecl 3
e.g., 5 pipelined instructions \

a nppt—/OIJtput N

¥ Parallel Data 3 C(;»re] ?
>1 data item @ one time nstjuction Unit(s), Ut:|ri|tc()on |
° e &)
e.g., Add of 4 pairs of words oo £ 1p A8, /A +B./A

¥ Hardware descriptions
All gates @ one time
¥ Programming Languages

i
i
> j
& Logic Gates
N

Multiprocessor Execution Model

¥ Each processor has its own PC and executes an
independent stream of instructions (MIMD)

¥ Different processors can access the same memory space
B Processors can communicate via shared memory by storing/

loading to/from common locations

¥ Two ways to use a multiprocessor:

1. Deliver high throughput for independent jobs via job-level
parallelism

2. Improve the run time of a single program that has been
specially crafted to run on a multiprocessor - a parallel-
processing program

Use term core for processor (“Multicore”) because
“Multiprocessor Microprocessor” too redundant

Simple Multiprocessor

Processor 0

Processor 0
Memory

A
DataEath

Accesses
% ReTgiEtersg \

DataEath

§Re'gisters§
| o

1/0-Memory Interfaces

Transition to Multicore

AMD Phenom (4 cores)
e | [nsistors
1 Os [: ; y p ousands)
: allel App
10° L : | Intel: ; .. Performance

Pentium:Pro
equential App

10 MIPS ; . d - ;. Performance
: y ; Frequency
. : - : MHz)
10° ; ; o L M)
5 * f . Typical Power
S S ; ATRE - (Watts)
4 Number
10 ¢ of Cores
10° v
i ; ;
1975 1980 1985 1990 1995 2000 2005 2010 2015
Data partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond

7/21/15

Parallelism Only Path to Higher
Performance
¥ Sequential processor performance not expected
to increase much, and might go down

¥ If want apps with more capability, have to
embrace parallel processing (SIMD and MIMD)

¥ In mobile systems, use multiple cores and GPUs

¥ In warehouse-scale computers, use multiple
nodes, and all the MIMD/SIMD capability of each
node

Multiprocessors and You

¥ Only path to performance is parallelism
B Clock rates flat or declining

D SIMD: 2X width every 3-4 years
¥ 128b wide now, 256b 2011, 512b in 2014, 1024b in 2018?

B MIMD: Add 2 cores every 2 years: 2, 4, 6, 8, 10, ...

¥ Key challenge is to craft parallel programs that have
high performance on multiprocessors as the number of
processors increase —i.e., that scale
B Scheduling, load balancing, time for synchronization,

overhead for communication

¥ Project 3: fastest code on 8-core computers

D 2 chips/computer, 4 cores/chip

Potential Parallel Performance
(assuming SW can use it)

. Core * Peak DP
SIMD bits /Core | g, pits | opg/cycle

2003 MIMD2 SIMD 128 256 mimp 4
2005 *2/ 4 2X/ 128 512 *SIMD g
2007 2¥rs g 4¥rs 1og 768 12
009 8 128 1024 16
2011 10 256 2560 40
2013 12 256 3072 48
2015 (25%14 8X 512 7168 |20x112
2017 16 512 8192 128
2019 18 1024 18432 288

021 20 024 20480 320

Threads

¥ Thread: a sequential flow of instructions that
performs some task

¥ Each thread has a PC + processor registers and
accesses the shared memory

¥ Each processor provides one (or more)
hardware threads (or harts) that actively
execute instructions

¥ Operating system multiplexes multiple
software threads onto the available hardware
threads

Operating System Threads

Give the illusion of many active threads by time-
multiplexing software threads onto hardware
threads

¥ Remove a software thread from a hardware
thread by interrupting its execution and saving its
registers and PC into memory

P Also if one thread is blocked waiting for network
access or user input

¥ Can make a different software thread active by
loading its registers into a hardware thread’s
registers and jumping to its saved PC

Hardware Multithreading

¥ Basic idea: Processor resources are expensive
and should not be left idle

¥ Long memory latency to memory on cache miss?

¥ Hardware switches threads to bring in other
useful work while waiting for cache miss

¥ Cost of thread context switch must be much less
than cache miss latency

¥ Put in redundant hardware so don’t have to save
context on every thread switch:
P PC, Registers

¥ Attractive for apps with abundant TLP
B Commercial multi-user workloads

Hardware Multithreading

Processor

Memol
l Control] v Input
A 4 A
[Datapath
PCO [PC1 1| le—

=5ytes

¥Two copies of PC and Registers
inside processor hardware

¥Looks like two processors to
software (hardware thread O,
hardware thread 1)

¥Control logic decides which thread
to execute an instruction from next

lgne‘gis@og ER@@E%

Output

1/O-Memory Interfaces

7/21/15

Multithreading vs. Multicore

¥ Multithreading => Better Utilization
P =1% more hardware, 1.10X better performance?

D Share integer adders, floating-point units, all caches
(L1 1S, L1 DS, L2S, L3S), Memory Controller

¥ Multicore => Duplicate Processors
P =50% more hardware, =2X better performance?
DShare outer caches (L2$, L3S$), Memory Controller
¥ Modern machines do both

P Multiple cores with multiple threads per core

Sagar’s MacBook Air
/usr/sbin/sysctl -a | grep hw\.
hw.model = MacBookAir7,2 hw.cachelinesize = 64
hw.llicachesize: 32,768
hw.l1dcachesize: 32,768
hw.l2cachesize: 262,144
hw.I3cachesize: 4,194,304

hw.physicalcpu: 2
hw.logicalcpu: 4

hw.cpufrequency =
1,600,000,000

hw.memsize = 4,294,967,296

A Research Machine

skarandikar@a8:~$ Iscpu

Architecture: Xx86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 32

On-line CPU(s) list: 0-31

Thread(s) per core: 2

gg;ﬁgizsg’f' socket: 2 Therefore, should try up
. to 32 threads to see if
L1d cache: 32K .

L1i cache: 32K performance gain even
L2 cache: 256K though only 16 real cores
L3 cache: 25600K

NUMA node0 CPU(S): 0-7,16-23

NUMA nodel CPU(s): 8-15,24-31

16

Administrivia

¥ Project 3-1 Out

P Last week, we built a CPU together, this week, you
start building your own!

¥ HW4 Out - Caches

¥ Guerrilla Section on Pipelining, Caches on
today, 5-7pm, Woz

Administrivia

¥ Midterm 2 is Tuesday
D In this room, at this time
P Two double-sided 8.5”x11” handwritten cheatsheets
B We'll provide a MIPS green sheet
B No electronics
B Covers up to and including 07/21 lecture
B Review session is Friday, 7/24 from 1-4pm in HP Aud.

Break

7/21/15

ActorScript
Ada

Afnix

Alef

Alice

APL

Axum
Chapel
Cilk

Clean
Clojure
Concurrent C

100s of (Mostly Dead)
Parallel Programming Languages

Concurrent Pascal
Concurrent ML
Concurrent Haskell
Curry

CUDA

E

Eiffel

Erlang

Fortan 90

JoCaml
Join
Java
Joule
Joyce
LabVIEW
Limbo
Linda
MultiLisp
Modula-3
Occam
occam-!

Orc

Oz

Pict

Reia

SALSA
Scala

SISAL

SR
Stackless Python
SuperPascal
VHDL

XC

OpenMP

¥ OpenMP is a language extension used for
multi-threaded, shared-memory parallelism
B Compiler Directives (inserted into source code)
P Runtime Library Routines (called from your code)
B Environment Variables (set in your shell)

¥ Portable

¥ Standardized

¥ Easy to compile: cc —fopenmp name.c

Shared Memory Model with Explicit
Thread-based Parallelism

¥ Multiple threads in a shared memory
environment, explicit programming model with
full programmer control over parallelization

¥ Pros:

P Takes advantage of shared memory, programmer
need not worry (that much) about data placement

B Compiler directives are simple and easy to use

P Legacy serial code does not need to be rewritten

¥ Cons:

B Code can only be run in shared memory environments
B Compiler must support OpenMP (e.g. gcc 4.2)

OpenMP in CS61C

¥ OpenMP is built on top of C, so you don’t have to
learn a whole new programming language
P Make sure to add #include <omp.h>
B Compile with flag: gcc -fopenmp
B Mostly just a few lines of code to learn
¥ You will NOT become experts at OpenMP
P Use slides as reference, will learn to use in lab
¥ Key ideas:
P Shared vs. Private variables

B OpenMP directives for parallelization, work sharing,
synchronization

OpenMP Programming Model

¥ Fork - Join Model:

master
thread

ZHOY

{parallel region }

ZHOY

{ parallel region}

¥ OpenMP programs begin as single process (master thread)
and executes sequentially until the first parallel region
construct is encountered
B FORK: Master thread then creates a team of parallel threads
P Statements in program that are enclosed by the parallel region
construct are executed in parallel among the various threads
B JOIN: When the team threads complete the statements in the
parallel region construct, they synchronize and terminate,

leaving only the master thread

OpenMP Extends C with Pragmas

¥ Pragmas are a preprocessor mechanism C
provides for language extensions

¥ Commonly implemented pragmas:
structure packing, symbol aliasing, floating
point exception modes (not covered in 61C)

¥ Good mechanism for OpenMP because
compilers that don't recognize a pragma are
supposed to ignore them

P Runs on sequential computer even with
embedded pragmas

7/21/15

parallel Pragma and Scope

¥ Basic OpenMP construct for parallelization:
#pragma omp parallel

{

This is annoying, but curly brace MUST go on separate
line from #pragma

/* code goes here */
¥
B Each thread runs a copy of code within the block
PThread scheduling is non-deterministic
¥ OpenMP default is shared variables
P To make private, need to declare with pragma:
#pragma omp parallel private (x)

Thread Creation

¥ How many threads will OpenMP create?
¥ Defined by OMP_NUM_THREADS
environment variable (or code procedure call)
P Set this variable to the maximum number of
threads you want OpenMP to use
P Usually equals the number of cores in the
underlying hardware on which the program is run

What Kind of Threads?

¥ OpenMP threads are operating system
(software) threads.

¥ 0S will multiplex requested OpenMP threads
onto available hardware threads.

¥ Hopefully each gets a real hardware thread to
run on, so no OS-level time-multiplexing.

¥ But other tasks on machine can also use
hardware threads!

¥ Be careful when timing results for project 3!

OMP_NUM_THREADS

¥ OpenMP intrinsic to set number of threads:
omp_set_num_threads(x);

¥ OpenMP intrinsic to get number of threads:
num_th = omp_get_num_threads();

¥ OpenMP intrinsic to get Thread ID number:
th_ID = omp_get _thread_num();

Parallel Hello World

#include <stdio.h>

#include <omp.h>

int main Q {
int nthreads, tid;
/* Fork team of threads with private var tid */
#pragma omp parallel private(tid)

tid = omp_get_thread_num(); /* get thread id */
printf(""Hello World from thread = %d\n", tid);
/* Only master thread does this */
if (tid == 0) {
nthreads = omp_get_num_threads();
printf(’'Number of threads = %d\n", nthreads);

} /* All threads join master and terminate */

¥

Data Races and Synchronization

¥ Two memory accesses form a data race if from
different threads to same location, and at least
one is a write, and they occur one after another

¥ If there is a data race, result of program can vary
depending on chance (which thread first?)

¥ Avoid data races by synchronizing writing and
reading to get deterministic behavior

¥ Synchronization done by user-level routines that
rely on hardware synchronization instructions

¥ (more later)

7/21/15

Analogy: Buying Milk

¥ Your fridge has no milk. You and your
roommate will return from classes at some
point and check the fridge

¥ Whoever gets home first will check the fridge,
go and buy milk, and return

¥ What if the other person gets back while the
first person is buying milk?
PYou’ve just bought twice as much milk as you

need!
¥ It would’ve helped to have left a note...

Lock Synchronization (1/2)

¥ Use a “Lock” to grant access to a region
(critical section) so that only one thread can
operate at a time
P Need all processors to be able to access the lock,

so use a location in shared memory as the lock

¥ Processors read lock and either wait (if locked)
or set lock and go into critical section
D0 means lock is free / open / unlocked / lock off
P 1 means lock is set / closed / locked / lock on

Lock Synchronization (2/2)

¥ Pseudocode:

Can loop/idle here
Check lock if locked

Set the lock

Critical section

(e.g- change shared variables)
Unset the lock

Possible Lock Implementation

¥ Lock (a.k.a. busy wait)
Get_lock: # $s0 -> addr of lock
addiu $tl1,$zero,1 # tl1 = Locked value
Loop: lw $t0,0($s0) # load lock
bne $t0,%zero,Loop # loop if locked
Lock: sw $t1,0($s0) # Unlocked, so lock

¥ Unlock

Unlock:
sw $zero,0($s0)

¥ Any problems with this?

Possible Lock Problem

¥ Thread 1
addiu $tl1,%$zero,1
Loop: Iw $t0,0($s0)

¥ Thread 2

addiu $t1,%$zero,1
Loop: Iw $t0,0($s0)

bne $t0,%$zero,Loop
bne $t0,%$zero,Loop
Lock: sw $t1,0($s0)

Lock: sw $t1,0($s0)
Time
Both threads think they have set the lock!
Exclusive access not guaranteed!

Hardware Synchronization

¥ Hardware support required to prevent an
interloper (another thread) from changing the
value
B Atomic read/write memory operation
P No other access to the location allowed between

the read and write

¥ How best to implement in software?
PSingle instr? Atomic swap of register €<> memory
P Pair of instr? One for read, one for write

7/21/15

Synchronization in MIPS

¥ Load linked: 1l rt,off(rs)
¥ Store conditional: sc rt,off(rs)

PReturns 1 (success) if location has not changed
since the 11

PReturns 0 (failure) if location has changed

¥ Note that sc clobbers the register value being
stored (rt)!

P Need to have a copy elsewhere if you plan on
repeating on failure or using value later

Synchronization in MIPS Example

¥ Atomic swap (to test/set lock variable)

Exchange contents of register and memory:
Ss4 <> Mem(S$s1)

try: add $t0,$zero,$s4 #copy value
11 $t1,0($s1) #load linked
sc $t0,0($sl1) #store conditional
beq $t0,$zero,try #loop if sc fails
add $s4,%zero,$tl #load value in $s4

sc would fail if another threads executes sc here

Test-and-Set

¥ In a single atomic operation: l
D Test to see if a memory location is set

(containsa 1)

D Set it (to 1) if it isn’t (it contained a zero—~

when tested)

P Otherwise indicate that the Set failed,_/ No
so the program can try again

Load semaphore

Try to own & lock
semaphore

B While accessing, no other instruction

can modify the memory location, \
including other Test-and-Set
instructions
¥ Useful for implementing lock
operations

Yes
Execute critical section
(Access shared data)

Unlock semaphore

Test-and-Set in MIPS

¥ Example: MIPS sequence for
implementing a T&S at ($s1)
Try: addiu $t0,$zero,1

Try to own & lock
BE_ a1 NrdaaN *

Idea is that not for programmers
to use this directly, but as a tool
for enabling implementation of
parallel libraries

UITIUCK -

sw $zero,0($s1)

——— | unlock semaphore

s

Clickers: Consider the following code when
executed concurrently by two threads.

What possible values can result in *($s0)?
*($s0) = 100
Iw $t0,0($s0)

addi $t0,$t0,1
sw $t0,0($s0)

B: 100, 101, or 102

D: 102

Break

7/21/15

OpenMP Directives (Work-Sharing)

¥ These are defined within a paral lel section

l master thread l master thread l master thread
FORK FORK
team l s*lo* I team I Isn*,s I team
JOIN JOIN
l master thread I master thread I master thread

Each section is executed Serializes the execution
by a separate thread of a thread

Shares iterations of a
loop across the threads

Parallel Statement Shorthand

#pragma omp parallel This is the only

{ directive in the
#pragma omp for parallel section
for(i=0;i<len;i++) { .. }

T

can be shortened to:

#pragma omp parallel for

for(i=0;i<len;i++) { .. }

¥ Also works for sections

Building Block: for loop

for (i=0; i<max; i++) zero[i] = O0;

¥ Break for loop into chunks, and allocate each to a
separate thread
b e.g. if max = 100 with 2 threads:
assign 0-49 to thread 0, and 50-99 to thread 1
¥ Must have relatively simple “shape” for an OpenMP-
aware compiler to be able to parallelize it
B Necessary for the run-time system to be able to determine
how many of the loop iterations to assign to each thread
¥ No premature exits from the loop allowed <— L”oi?t"jif;'é)
Di.e. Nobreak, return, exit, goto statements outside of any
pragma block

Parallel for pragma

#pragma omp parallel for
for (i=0; i<max; i++) zero[i] = O;

¥ Master thread creates additional threads,
each with a separate execution context master

¥ All variables declared outside for loop are
shared by default, except for loop index
which is private per thread (Why?)

¥ Implicit synchronization at end of for loop

¥ Divide index regions sequentially per thread lmm’
P Thread 0 gets 0, 1, ..., (max/n)-1;
P Thread 1 gets max/n, max/n+1, ..., 2*(max/n)-1
D Why?

OpenMP Timing

¥ Elapsed wall clock time:

double omp_get_wtime(void);

PReturns elapsed wall clock time in seconds

P Time is measured per thread, no guarantee can be
made that two distinct threads measure the same
time

PTime is measured from “some time in the past,”
so subtract results of two calls to
omp_get_wtime to get elapsed time

Matrix Multiply in OpenMP

start_time = omp_get_wtime();
#pragma omp parallel for private(tmp, i, j, k)
for (i=0; i<Mdim; i++) { & Outer loop spread
for (j=0; j<Ndim; j++){ across N threads;
tmp = 0.0; inner loops inside a
for(k=0; k<Pdim; k++) { single thread
/* C(i,j) = sum(over k) A(i,k) * B(k,j)*/
tmp += * (A+(i*Pdim+k)) * *(B+(k*Ndim+3j));
}
* (C+(i*Ndim+j)) = tmp;
}
}
run_time = omp_get wtime() - start_time;

7/21/15

Notes on Matrix Multiply Example

¥ More performance optimizations available:
P Higher compiler optimization (-02, -03) to reduce
number of instructions executed
B Cache blocking to improve memory performance

P Using SIMD SSE instructions to raise floating point
computation rate (DLP)

And in Conclusion, ...

¥ Sequential software is slow software
D SIMD and MIMD only path to higher performance

¥ Multithreading increases utilization, Multicore
more processors (MIMD)

¥ OpenMP as simple parallel extension to C
PThreads, Parallel for, private, critical sections, ...

P = C: small so easy to learn, but not very high level
and it’s easy to get into trouble

