0x80 =

CS 61C Summer 2016
Guerrilla Section 1: Number Representation & C

Question 0: Warm Up

1) Convert the following 8-bit two’s complement numbers from
hexadecimal to decimal:

OxF4 =

OxOE =

2) Assume that the most significant bit (MSB) of x is a 0. We store the

result of flipping Xx’s bits into .

Interpreted in the following number

representations, how large is the magnitude of y relative to the
magnitude of x? Circle ONE choice per row.

Unsigned ly| <[] ly| = [x] ly| >|x] Can’t Tell
One’s Complement ly| < |X] ly| = |X] ly| >|x] Can't Tell
Two’s Complement ly| <[] ly| = |x]| ly| >|x| Can't Tell
Sign and Magnitude ly|] < |X| ly|] = |X] ly| >|x| Can't Tell

Question 1: Silly Rabbit, Trits Are for Kids

A new memory technology with three distinct states is exploding into the
technology industry! Let's see if we can’t develop some new number
representations to take advantage of this new development.

(a) First, define a rule, analogous to what we use for binary numerals,

for determining the unsigned value of a ternary numeral d,, d., . . . d,,

and use this rule to convert 2102, into decimal:
unsigned(d,, d, ... d,) =
unsigned(2102,) =

(b) Next we'd like to define an analogue to two’s complement for ternary
numerals, which we’'ll call three’s complement. Three’s complement
numbers should be as evenly distributed between positive and negative
as possible (favor negative if necessary), should have a zero at 0,, and
should increase in value when incremented as an unsigned value
(except in the case of overflow). Define a rule for negating a three’s
complement number.

(c) What is the most positive possible three’s complement 8-trit
number? Using this result, specify a rule for determining if a three’s
complement number is positive or negative.

(d) There are two different two’s complement numbers who are their
own inverse. Specify these numbers.

(e) What arithmetic operation is a shift left logical equivalent to with
three’s complement numbers?

Question 2: Wow! If only you could C the main memory (Fa
15.M1)

Consider the following C program:

int a = 5;
void foo(){

int temp;
}

int main()

{
int b = @;
char* s1 = “cs6lc”;
char s2[] = "cs6lc”;
char* ¢ = malloc(sizeof(char) * 18@);
foo();
return @;

b

1) Sort the following values from least to greatest: &, ¢, b, &temp, &a.

2) For each of the following values, state the location in the memory layout where they are stored.
Answer with code, static, heap, or stack.

sl

52

s1[@]

s2[0]

c[e]

Question 3: C Memory Model (Sp 15. M1)

For each of the following functions, answer the questions below in the corresponding box to the right:
1) Does this function return a usable pointer to a string containing “asd£”?
2) Which area of memory does the returned pointer point to?
3) Does this function leak memory?

You may assume that malloc calls will always return a non-NULL pointer.

char * get_asdf string 1() { get_asdf_ string 1
char *a = "asdf”; 1)
return a;
} 2)
3)
char * get_asdf_string_2() { get asdf string 2
char a[5]; 1)
a[e]=‘a’;
a[1]=s’; 2)
a[2]="d’;
a[3]="f"; 3)
a[4]="\¢’;
return a;
}
char * get_asdf_string 3() { get asdf string 3
char * a = malloc(sizeof(char) * 5); 1)
a = “asdf”;
return a; 2)
} .
3)

Question 4: Linked Lists (Sp 15. M1)

1) Fill out the declaration of a singly linked linked-list node below.

typedef struct node {

int value;
next; // pointer to the next element

} s11 node;

2) Let's convert the linked list to an array. Fill in the missing code.

int * to_array(sll node *sll, int size) {

inti=@8;
int *arr = H
while (s11) {
arr[i] = H
511 = H
}

return arr;

}

3) Finally, complete delete_even() that will delete every second element of the list. For
example, given the lists below:
Before: | Node 1| — [Node2 | — [Node3 | — [Node 4 |

After: [Node1]— [Node3 |

Calling delete_even() on the list labeled “Before” will change it into the list labeled “After”.
All list nodes were created via dynamic memory allocation.

void delete even(sll node *sll) {
s1l node *temp;
if (!sll || !sll->next) return;
temp = 3
sll-»next = H
free();
delete_even();

