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With the MOESI concurrency protocol implemented, accesses to cache accesses appear serializiable. This means 
that the result of the parallel cache accesses appear the same as if there were done in serial from one processor 
in some ordering.  
 

1. Consider the following access pattern on a two-processor system with a direct-mapped, write-back 
cache with one cache block and a two cache block memory. Assume the MOESI protocol is used, with 
write- back caches, write-allocate, and invalidation of other caches on write (instead of updating the 
value in the other caches).  
 
 
 
 
 
 

2. What is the advantage of MOESI over MESI? (Hint: notice a key difference between MOESI 
and MESI, what state does MOESI have that MESI doesn’t and how might that state be 
advantageous?) 
The MOESI protocol has two main advantages over MESI: 
1. The Owned state allows for snooping, that is, directly sharing its content (which is not up to date with 
main memory) with other caches. For other caches reading from an Owned state is oftern faster than 
reading from main memory. 
2. In theory, we can implement MOESI such that if a cache block has an Owner and multiple Shared 
states, a write to the Owned state and be reflected in other caches by having them update. In MESI, 
there is no Owned state and a Modified state cannot be Shared, so a write to an Shared state would 
invalidate all Shared caches, leading to further cache misses. (A Shared state need not be up-to-date 
with memory in MOESI, but it must be in MESI). 

State Cache up to 
date? 

Memory up 
to date? 

Others have a 
copy? 

Can write without 
changing state? 

Modified Yes No No Yes 
Owned Yes No Yes No 
Exclusive Yes Yes No No 
Shared Yes Maybe Yes No 
Invalid No Maybe Maybe No 

Time After Operation P1 cache state P2 cache state Memory @ 0 
up to date? 

Memory @ 1 
up to date? 

0 P1: read block 1 Exclusive (1) Invalid YES YES 
1 P2: read block 1 Shared (1) Shared (1) YES YES 
2 P1: write block 1 Modified (1) Invalid YES NO 
3 P2: write block 1 Invalid Modified (1) YES NO 
4 P1: read block 0 Exclusive (0) Modified (1) YES NO 
5 P2: read block 0 Shared (0) Shared (0) YES YES 
6 P1: write block 0 Modified (0) Invalid NO YES 
7 P2: read block 0 Owned (0) Shared (0) NO YES 
8 P2: write block 0 Invalid Modified (0) NO YES 
9 P1: read block 0 Shared (0) Owned (0) NO YES 



	

	

 
Concurrency  

1. Consider the following function:  
void transferFunds(struct account *from, 
                      struct account *to, 
                      long cents) 
   { 
      from->cents -= cents;  
      to->cents += cents; 
   }  
 
a. What are some data races that could occur if this function is called simultaneously from two (or 

more) threads on the same accounts? (Hint: if the problem isn’t obvious, translate the function into 
MIPS first) 
 
Each thread needs to read the “current” value, perform an add/sub, and store a value for from- 
>cents and to->cents. Two threads could read the same “current” value and the later store 
essentially erases the other transaction at either line. 
 

b. How could you fix or avoid these races? Can you do this without hardware support? 
 
Wrap transferFunds in a critical section, or divide up the accounts array and for loop in a way that 
you can have separate threads work on different accounts. You can also create an atomic section for 
any parts of the code that may have data races. 

  



	

	

3. Data race and Atomic operations. 
 
The benefits of multi-threading programming come only after you understand concurrency. Here are two 
most common concurrency issues: 
 

• Cache-incoherence: each hardware thread has its own cache, hence data modified in one thread 
may not be immediately reflected in the other. The can often be solved by bypassing cache and 
writing directly to memory, i.e. using volatile keyword in many languages. 

• The famous Read-modify-write: Read-modify-write is a very common pattern in programming. 
In the context of multi-thread programming, the interleaving of R,M,W stages often produces a 
lot of issues. 

 
To solve problem with Read-modify-write, we have to rely on the idea of undisrupted execution.  
 
In RISC-V, we have two categories of atomic instructions: 

• Load-reserve, store-conditional (undisrupted execution across multiple instructions) 
• Amo.swap (single, undisrupted memory operation) and other amo operations. 

Both can be used to achieve atomic primitives, here are two examples. 

 
Instruction semantics: 
 

• lr:  Loads the four bytes from memory at address x[rs1], writes them to x[rd], sign-extending the 
result, and registers a reservation on that memory word. 

• sc: Stores the four bytes in register x[rs2] to memory at address x[rs1], provided there exists a 
load reservation on that memory address. Writes 0 to x[rd] if the store succeeded, or a nonzero 
error code otherwise. 

• Amoswap: Atomically, let t be the value of the memory word at address x[rs1], then set that 
memory word to x[rs2]. Set x[rd] to the sign extension of t. 

 
Question: why do we need special instructions for these operations? Why can’t we use normal load and 
store for lr and sc? Why can’t we expand amoswap to a normal load and store? 
 
Answer:  For lr and sc, after lr, other threads cannot write to the location marked reserve, hence the 
value loaded from memory (a3 in the above example) will be unchanged between lr and sc. 
For amoswap, it does load and store in one single CPU cycle, hence the operation is atomic and 
undisruptable. 

Test-and-set 
Start: addi                  t0 x0 1 #locked state is 1 
          amoswap.w.aq t1 t0 (a0) 
          bne                   t1 x0 start #if the lock is not    
                                                      free, retry 
           
          … #critical section 
           
          amoswap.w.rl  x0 x0 a0#release lock 
 
	

Compare-and-swap 
#expect old value in a1, desired new value in a2 
Start: lr.w       a3 (a0) 
         bne        a3 a1 fail #CAS fail 
         sc.w      a3 a2 (a0)     
         bnez      a3 error #store unsuccessful 
          … #critical section 
          amoswap.w.rl  x0 x0 a0 
fail: #failed CAS 
	


