
CS61C Summer 2019 Discussion 1 – C Basics

1 C Introduction

C is syntactically very similar to Java, but there are a few key differences of which to be wary:

• C is function oriented, not object oriented, so there are no objects.

• C does not automatically handle memory for you.

– In the case of stack memory (things allocated in the “usual” way), a datum is garbage immedi-
ately after the function in which it was defined returns.

– In the case of heap memory (things allocated with malloc and friends), data is freed only when
the programmer explicitly frees it.

– In any case, allocated memory always holds garbage until it is initialized.

• C uses pointers explicitly. *p tells us to use the value that p points to, rather than the value of p,
and &x gives the address of x rather than the value of x. See the following example (the following
addresses were chosen aribitrarily). On the left we see a diagram of pointers and memory that may
help you visualize pointers. On the right, we see how those “boxes and arrows” are really repre-
sented.

...

x=0x61C

0x2A
...
p

pp
...

0xFFFFFFFF

0x00000000

0xF93209B0

0xF93209AC

0xF9320904
0xF9320900

...

0x61C

0x2A
...

0xF93209AC

0xF9320904
...

0xFFFFFFFF

0x00000000

0xF93209B0

0xF93209AC

0xF9320904

0xF9320900

Let’s assume that int* p is located at 0xF9320904 and int x is located at 0xF93209B0. As we can
observe:

– *p should return 0x2A (4210).

– p should return 0xF93209AC.

– x should return 0x61C.

– &x should return 0xF93209B0.

Let’s say we have an int **pp that is located at 0xF9320900. What would pp return? How about *pp?
What about **pp?

There are other differences in C of which you should be aware of, but this should be enough for you to get
your feet wet.

2 Uncommented Code? Yuck!

The following functions work correctly (note: this does not mean intelligently), but have no comments.
Document the code to prevent it from causing further confusion.

1

1. /* Returns the sum of the first N elements in ARR. */
int foo(int *arr, size_t n) {

return n ? arr[0] + foo(arr + 1, n - 1) : 0;
/* Reminder syntax for ternary is: cond? true_result: false_result. */

}

2. /* Returns -1 times the number of zeroes in the first N elements of ARR. */
int bar(int *arr, size_t n) {

int sum = 0, i;

for (i = n; i > 0; i--) {
sum += !arr[i - 1];
/* Assume ! of a true value is 0 and ! of a false value is 1. */

}

return ~sum + 1;
}

3. /* Does nothing. */
void baz(int x, int y) {

x = x ^ y;
y = x ^ y;
x = x ^ y;

}

3 Programming with Pointers

Implement the following functions so that they perform as described in the comments.

1. /* Swaps the value of two ints outside of this function. */

void swap(int *x, int *y) {
int temp = *x;

*x = *y;

*y = temp;
}

2. /* Increments the value of an int outside of this function by one. */

void plus_plus(int *x) {\
(*x)++; // or: x[0]++;

}

3. /* Returns the number of bytes in a string. Does not use strlen. */

2

int mystrlen(char* str) {
int count = 0;
while(*str++) {

count++;
}
return count;

}

4 Problem?

The following code segments may contain logic and syntax errors. Find and correct them.

1. /* Returns the sum of all the elements in SUMMANDS. */
/* When iterating through a pointer in C it is

* necessary to pass a size alongside the pointer. */
int sum(int* summands) { // int sum(int* summands, unsigned int n) {

int sum = 0;
for (int i = 0; i < sizeof(summands); i++) // for (int i = 0; i < n; i++)

sum += *(summands + i);
return sum;

}

2. /* Increments all the letters in the string STRING, held in an array of length N.

* Does not modify any other memory which has been previously allocated. */
/* The ends of strings are denoted by the null terminator.

* Simply having space for n characters in the array does not

* mean the array is of length n.*/
void increment(char* string, int n) {

for (int i = 0; i < n; i++) // for (i = 0; string[i] != 0; i++)

(string + i)++; // string[i]++; or ((string + i))++;

}

/* Consider the corner case of incrementing 0xFF.

* Adding 1 to 0xFF will overflow back to 0, producing

* a null terminator and shortening the string. */

3. /* Copies the string SRC to DST. */
void copy(char* src, char* dst) {

while (*dst++ = *src++);
}
// This code has no errors.

4. /* Overwrites an inputted string with ‘‘61C is awesome!’’ if there’s room.

* Does nothing if there is not. Assume that srcLength correctly represents

* the length of src. */
void CS61C(char* src, size_t srcLength) {

3

char *srcptr, replaceptr; // char *srcptr, *replaceptr;
char replacement[16] = ‘‘61C is awesome!’’;
srcptr = src;
replaceptr = replacement;
if (srcLength >= 16) {

for (int i = 0; i < 16; i++)

*srcptr++ = *replaceptr++;
}

}
// “char *srcptr, replaceptr” initializes a char pointer and a char.
// Not two char pointers.
// “char *srcptr, replaceptr” is not the same as “char *srcptr, *replaceptr”.

4

