
CS 61C Logic,SDS
Summer 2019 Discussion 6: June 15, 2019

1 Boolean Logic
In digital electronics, it is often important to get certain outputs based on your

inputs, as laid out by a truth table. Truth tables map directly to Boolean expressions,

and Boolean expressions map directly to logic gates. However, in order to minimize

the number of logic gates needed to implement a circuit, it is often useful to simplify

long Boolean expressions.

We can simplify expressions using the nine key laws of Boolean algebra:

Name AND Form OR form

Commutative AB = BA A + B = B + A

Associative AB(C) = A(BC) A + (B + C) = (A + B) + C

Identity 1A = A 0 + A = A

Null 0A = 0 1 + A = 1

Absorption A(A + B) = A A + AB = A

Distributive (A + B)(A + C) = A + BC A(B + C) = AB + AC

Idempotent A(A) = A A + A = A

Inverse A(A) = 0 A + A = 1

Demorgan’s AB = A + B A + B = A(B)

1.1 Simplify the following Boolean expressions:

(a) (A + B)(A + B)C

(A + B)(A + B̄)C = (A + BB̄)C

= AC

(b) ĀB̄C̄ + ĀBC̄ + ABC̄ + AB̄C̄ + ABC + AB̄C

ĀC̄(B̄ + B) + AC̄(B + B̄) + AC(B + B̄) = ĀC̄ + AC̄ + AC

= ĀC̄ + AC̄ + AC̄ + AC

= (Ā + A)C̄ + A(C̄ + C)

= A + C̄

(c) A(B̄C̄ + BC)



2 Logic,SDS

A(B̄C̄ + BC) = Ā + B̄C̄ + BC

= Ā + B̄C̄BC

= Ā + (B + C)(B̄ + C̄)

= Ā + BC̄ + B̄C

(d) A(A + B) + (B + AA)(A + B)

A(A + B) + (B + AA)(A + B = (AA + AB) + (B + AA)(A + B)

= AB + (B + AA)(A + B)

= AB + (B + A)(A + B)

= AB + (BA + AA + BB + AB)

= AB + (BA + A + AB)

= AB + A

= A + B

2 State Intro
There are two basic types of circuits: combinational logic circuits and state elements.

Combinational logic circuits simply change based on their inputs after whatever

propagation delay is associated with them. For example, if an AND gate (pictured

below) has an associated propagation delay of 2ps, its output will change based on

its input as follows:

input a 2L 4H 3L 2H 2L 1H 5L 1H 1L 1H 2L

input b 2L 4H 3L 2H 2L 1H 5L 1H 1L 1H 2L

output 2U 2L 4H 3L 2H 2L 1H 5L 1H 1L 1H

Where U, L, and H refer to an undefined, low (0), or high (1) signal respectively, for

some number of nanoseconds.

You should notice that the output of this AND gate always changes 2ps after its

inputs change.

State elements, on the other hand, can remember their inputs even after the inputs

change. State elements change value based on a clock signal. A rising edge-triggered

register, for example, samples its input at the rising edge of the clock (when the

clock signal goes from 0 to 1).

Like logic gates, registers also have a delay associated with them before their output

will reflect the input that was sampled. This is called the clk-to-q delay. (“Q” often

indicates output). This is the time between the rising edge of the clock signal and

the time the register’s output reflects the input change.



Logic,SDS 3

The input the register samples has to be stable for a certain

amount of time around the rising edge of the clock for the

input to be sampled accurately. The amount of time before

the rising edge the input must be stable is called the setup

time, and the time after the rising edge the input must be

stable is called the hold time. Hold time is included in

clk-to-q delay, so clk-to-q time will always be greater than or equal to hold time.



4 Logic,SDS

For the following register circuit, assume setup of 2.5ps, hold time of 1.5ps, and a

clk-to-q time of 1.5ps. The clock signal has a period of 13ps.

clock 6.5L 6.5H 6.5L 6.5H

input 1L 2H 1L 5H 3L 2H 2L 1H 5L 1H 3L

output 8U 13H 5L

You’ll notice that the value of the output in the diagram above doesn’t change

immediately after the rising edge of the clock. Clock cycle time must be small

enough that inputs to registers don’t change within the hold time and large enough

to account for clk-to-q times, setup times, and combinational logic delays.

2.1 For the following 2 circuits, fill out the timing diagram. The clock period (rising

edge to rising edge) is 8ps. For every register, clk-to-q delay is 2ps, setup time is

4ps, and hold time is 2ps. NOT gates have a 2ps propagation delay

clk 4L 4H 4L 4H 4L 4H 4L 4H 4L 4H 4L 4H

in 14L 4H 6L 16H 8L

s0 6U 16L 8U 16H 2L

s1 14U 16L 8U 10H

out 22U 16L 8U 2H

clk 4L 4H 4L 4H 4L 4H 4L 4H 4L 4H 4L 4H

!clk 4H 4L 4H 4L 4H 4L 4H 4L 4H 4L 4H 4L

A 6H 8L 8H 2L 6H 8L 2H 6L 2H

R1 6U 8H 8L 16H 10L

R2 12U 8H 8L 16H 4L



Logic,SDS 5

2.2 In the circuit below, RegA and RegB have setup, hold, and clk-to-q times of 4ns,

all logic gates have a delay of 5ns, and RegC has a setup time of 6ns. What is the

maximum allowable hold time for RegC? What is the minimum acceptable clock

cycle time for this circuit, and clock frequency does it correspond to?

The maximum allowable hold time for RegC is how long it takes for RegC’s input

to change, so (clk-to-q of A or B) + shortest CL time = 4 + (5 + 5) = 14 ns.

The minimum acceptable clock cycle time is clk-to-q + longest CL time + setup

time = 4 + (5 + 5 + 5) + 6 = 25 ns.

25 ns corresponds to a clock frequency of (1/(25 ∗ 10−9))s−1 = 40MHz

3 Finite State Machines
Automatons are machines that receive input and use various states to produce

output. A finite state machine is a type of simple automaton where the next state

and output depend only on the current state and input. Each state is represented by

a circle, and every proper finite state machine has a starting state, signified either

with the label “Start” or a single arrow leading into it. Each transition between

states is labeled [input]/[output].

3.1 What pattern in a bitstring does the FSM below detect? What would it output for

the input bitstring “011001001110”?

00/0 1 1/1

0/0

1/0

Start



6 Logic,SDS

The FSM outputs a 1 if it detects the pattern “11”.

The FSM would output “001000000110”

3.2 Fill in the following FSM for outputting a 1 whenever we have two repeating bits as

the most recent bits, and a 0 otherwise. You may not need all states.

Start

1/0

0/0

1

1/1

0/0

0

0/1

1/0

3.3 Write an FSM that will output a 1 if it recognizes the regex pattern {10+1}.


	Boolean Logic
	State Intro
	Finite State Machines

