
CS 61C Summer 2019 Discussion 0 – Number Representation
1 Unsigned Integers
If we have an n-digit unsigned numeral dn−1dn−2 . . . d0 in radix (or base) r, then the value of that numeral is∑n−1

i=0 r
idi, which is just fancy notation to say that instead of a 10’s or 100’s place we have an r’s or r2’s place.

For the three radices binary, decimal, and hex, we just let r be 2, 10, and 16, respectively.
Recall also that we often have cause to write down unreasonably large numbers, and our preferred tool for

doing that is the IEC prefixing system:

Ki (Kibi) = 210 Mi (Mebi) = 220 Gi (Gibi) = 230 Ti (Tebi) = 240

Pi (Pebi) = 250 Ei (Exbi) = 260 Zi (Zebi) = 270 Yi (Yobi) = 280

1.1 We don’t have calculators during exams, so let’s try this by hand

1. Convert the following numbers from their initial radix into the other two common radices:

(a) 0b10010011 = 147 = 0x93

(b) 63 = 0b0011 1111 = 0x3F

(c) 0b00100100 = 36 = 0x24

(d) 0 = 0b0 = 0x0

(e) 39 = 0b0010 0111 = 0x27

(f) 437 = 0b0001 1011 0101 = 0x1B5

(g) 0x0123 = 0b 0000 0001 0010 0011 = 291

2. Convert the following numbers from hex to binary:

(a) 0xD3AD = 0b1101 0011 1010 1101 = 54189

(b) 0xB33F = 0b1011 0011 0011 1111 = 45887

(c) 0x7EC4 = 0b0111 1110 1100 0100 = 32452

3. Write the following numbers using IEC prefixes:

• 216 = 64 Ki

• 234 = 16 Gi

• 227 = 128 Mi

• 261 = 2 Ei

• 243 = 8 Ti

• 247 = 128 Ti

• 236 = 64 Gi

• 258 = 256 Pi

4. Write the following numbers as powers of 2:

• 2 Ki = 211

• 256 Pi = 258
• 512 Ki = 219

• 64 Gi = 236
• 16 Mi = 224

• 128 Ei = 267

2 Signed Integers

Unsigned binary numbers work for natural numbers, but many calculations use negative numbers as well. To
deal with this, a number of different schemes have been used to represent signed numbers, but we will focus on
two’s complement, as it is the standard solution for representing signed integers.

2.1 Two’s complement

• Most significant bit has a negative value, all others are positive. $o the value of an n-digit two’s complement
number can be written as

∑n−2
i=0 2idi − 2n−1dn.

• Otherwise exactly the same as unsigned integers.

• A neat trick for flipping the sign of a two’s complement number: flip all the bits and add 1.

• Addition is exactly the same as with an unsigned number.

• Only one 0, and it’s located at 0b0.

1



2.2 Exercises

For questions 1 – 3, assume an 8 bit integer and answer each one for the case of an unsigned number, biased
number with a bias of -127, and two’s complement number, indicating if it cannot be answered with a specific
representation.

1. What is the largest integer? The largest integer’s representation + 1?

(a) [Unsigned] 255, 0

(b) [Biased] 128, -127

(c) [Two’s Complement] 127, -128

2. How do you represent the numbers 0, 1, and -1?

(a) [Unsigned] 0b0000 0000, 0b0000 0001, N/A

(b) [Biased] 0b0111 1111, 0b1000 0000, 0b0111 1110

(c) [Two’s Complement] 0b0000 0000, 0b0000 0001, 0b1111 1111

3. How do you represent 17, -17?

(a) [Unsigned] 0b0001 0001, N/A

(b) [Biased] 0b1001 0000, 0b0110 1110

(c) [Two’s Complement] 0b0001 0001, 0b1110 1111

4. What is the largest integer that can be represented by any encoding scheme that only uses 8 bits?
There is no such integer. For example, an arbitraru 8-bit mapping could choose to represent the numbers
from 1 to 256 instead of 0 to 255.

5. Prove that the two’s complement inversion trick is valid (i.e. that x and x+ 1 sum to 0).
Note that for any x we have x + x = 0b1...1. A straightforward hand calculation shows that 0b1...1 +
0b1 = 0.

6. Explain where each of the three radices shines and why it is preferred over other bases in a given context.
Decimal is the preferred radix for human hand calculations, likely related to the fact that humans have
10 fingers.
Binary numerals are particularly useful for computers. Binary signals are less likely to be garbled than
higher radix signals, as there is more distance (voltage or current) between valid signals. Additionally,
binary signals are quite convenient to design circuits with, as well see later in the course.
Hexadecimal numbers are a convenient shorthand for displaying binary numbers, owing to the fact that
one hex digit corresponds exactly to four binary digits.

3 Counting
Bitstrings can be used to represent more than just numbers. In fact, we use bitstrings to represent everything
inside a computer. And, because we don’t want to be wasteful with bits it is important that to remember that n
bits can be used to represent 2n distinct things. For each of the following questions, answer with the minimum
number of bits possible.

3.1 Exercises

1. How many bits do we need to represent a variable that can only take on the values 0, π or e?
2

2. If we need to address 3 TiB of memory and we want to address every byte of memory, how long does an
address need to be?
42 bits

3. If the only value a variable can take on is e, how many bits are needed to represent it.
0
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