CS 61C Flynn’s Taxonomy, DLP
Summer 2019 Discussion 10: July 29, 2019

| Flynn7s Taxonomy

Explain SISD and give an example if available

Single Instruction Single Data; each instruction is executed in order, acting on a

single stream of data. For example, traditional computer programs.
Explain SIMD and give an example if available

Single Instruction Multiple Data; each instruction is executed in order, acting on

multiple streams of data. For example, the SSE Intrinsics.
Explain MISD and give an example if available

Multiple Instruction Single Data; multiple instructions are executed simultaneously,

acting on a single stream of data. There are no good modern examples.
Explain MIMD and give an example if available

Multiple Instruction Multiple Data; multiple instructions are executed simultaneously,
acting on multiple streams of data. For example, map reduce or multithreaded

programs.

2 Data-Level Parallelism

The idea central to data level parallelism is vectorized calculation: applying opera-

tions to multiple items (which are part of a single vector) at the same time.

Source 1 ‘ X3 | X2 ‘ X1 | X0 ‘

Source 2 ‘ Y3 | Y2 ‘ Y1 | YO0 ‘
@ @ @ @

Destination X3 0P Y3 | X2 OP Y2 ‘ X1 0P Y1 | X0 OP YO ‘

Some machines with x86 architectures have special, wider registers, that can hold
128, 256, or even 512 bits. Intel intrinsics (Intel proprietary technology) allow us to

use these wider registers to harness the power of DLP in C code.

Below is a small selection of the available Intel intrinsic instructions. All of them
perform operations using 128-bit registers. The type __m128i is used when these
registers hold 4 ints, 8 shorts or 16 chars; __m128d is used for 2 double precision
floats, and __m128 is used for 4 single precision floats. Where you see “epiXX”, epi

stands for extended packed integer, and XX is the number of bits in the integer.

2

Flynn’s Taxonomy, DLP

“epi32” for example indicates that we are treating the 128-bit register as a pack of 4

32-bit integers.

You

__m128i _mm_set1_epi32(int i):

Set the four signed 32-bit integers within the vector to i.
__m128i _mm_loadu_si128(__m128i *p):

Return the 128-bit vector stored at pointer p.

m128i b):
Return vector (ag - bg, a1 - b1, as - ba, as - b3).

__m128i _mm_add_epi32(__m128i a, __m128i b):
Return vector (ag + bg, a1 + b1, as + ba, az + b3)

void _mm_storeu_si128(__m128i *p, __m128i a):

__m128i _mm_mullo_epi32(__m128i a

PR—

Store 128-bit vector a at pointer p.

__m128i _mm_and_si128(__m128i a, __m128i b):

Perform a bitwise AND of 128 bits in a and b, and return the result.

m128i b):

Compare packed 32-bit integers in a and b for equality, set return vector to
OxFFFFFFFF if equal and 0 if not.

__m128i _mm_cmpeq_epi32(__m128i a

PR—

have an array of 32-bit integers and a 128-bit vector as follows:

int arr[8] = {1, 2, 3, 4, 5, 6, 7, 8};

__ml

28i vector = _mm_loadu_si128((__m128i *) arr);

For each of the following tasks, fill in the correct arguments for each SIMD instruction,

and where necessary, fill in the appropriate SIMD function. Assume they happen
independently, i.e. the results of Part (a) do not at all affect Part (b).

(a)

()

Multiply vector by itself, and set vector to the result.

vector = _mm_mullo_epi32(vector, vector);

Add 1 to each of the first 4 elements of the arr, resulting in arr = {2, 3, 4,
5, 5, 6, 7, 8}

__m128i vector_ones = _mm_set1_epi32(1);

__m128i result = _mm_add_epi32(vector, vector_ones);
_mm_storeu_si128((__m128i *) arr, result);

Notice: In this and the following solutions, we are using the unaligned ver-
sions of the commands that interface with memory (i.e. storeu/loadu vs.
store/load). This is because the store/load commands require that the ad-
dress we are loading at is aligned at some byte boundary (and not necessarily
just word-aligned), whereas the unaligned versions have no such requirements.
For instance, _mm_store_si128 needs the address to be aligned on a 16-byte
boundary (i.e. is a multiple of 16). There is extra work that needs to be done to
achieve these alignment requirements, so for this class, we just use the unaligned

variants.

Add the second half of the array to the first half of the array, resulting

Flynn’s Taxonomy, DLP 3

inarr = {1 +5, 2+6,3+7,4+8,5,6,7,8}={6,8, 10, 12, 5,
6, 7, 8}

1 __m128i result = _mm_add_epi32(_mm_loadu_si128((__m128i *) (arr + 4)), vector);
2 _mm_storeu_si128((m128ix*) arr, result);

(d) Set every element of the array that is not equal to 5 to 0, resulting in arr
= {0, 9, 0, 0, 5, 9, 0, 0}. Remember that the first half of the array has
already been loaded into vector.

1 __m128i fives = _mm_set1_epi32(5);

2 __m128i mask = _mm_cmpeq_epi32(vector, fives);

3 __m128i result = _mm_and_si128(mask, vector);

4 __mm_storeu_si128((__m128i *) arr, result);

5 vector = _mm_loadu_si128((__m128i *) (arr + 4));
6 mask = _mm_cmpeq_epi32(vector, fives);

7 result = _mm_and_si128(mask, vector);

8 _mm_storeu_si128((__m128i *) (arr + 4), result);

Implement the following function, which returns the product of all of the elements

in an array.

static int product_naive(int n, int *a) {
int product = 1;
for (int i = 0; i <n; i++) {
product *= al[i];
3

return product;

static int product_vectorized(int n, int *a) {
int result[4];
for (int i = 0; i <n/4 x 4; i +=4) { // Vectorized loop
mm_loadu_si128((__m128i *) (a + i)));

_m128i prod_v = __mm_set1_epi32(1);

prod_v = __mm_mullo_epi32(prod_v

P —

3

_mm_storeu_si128((__m128i *) result, prod_v);

for (int i = n/4 * 4; i < n; i++) { // Handle tail case
result[@] *= a[il;

3

return result[@] x result[1] * result[2] * result[3];

	Flynn's Taxonomy
	Data-Level Parallelism

