
CS 61C Amdahl’s Law, TLP
Summer 2019 Discussion 11: July 31, 2019

1 Amdahl’s Law
In the programs we write, there are sections of code that are naturally able to be

sped up. However, there are likely sections that just can’t be optimized any further

to maintain correctness. In the end, the overall program speedup is the number that

matters, and we can determine this using Amdahl’s Law:

True Speedup =
1

S + 1−S
P

where S is the non-sped-up part and P is the speedup factor (determined by the

number of cores, threads, etc.).

1.1 You are going to run a convolutional network to classify a set of 100,000 images

using a computer with 32 threads. You notice that 99% of the execution of your

project code can be parallelized on these threads. What is the speedup?

1.2 You run a profiling program on a different program to find out what percent of this

program each function takes. You get the following results:

Function % Time

f 30%

g 10%

h 60%

(a) We don’t know if these functions can actually be parallelized. However, assuming

all of them can be, which one would benefit the most from parallelism?

(b) Let’s assume that we verified that your chosen function can actually be paral-

lelized. What speedup would you get if you parallelized just this function with

8 threads?

2 Thread-Level Parallelism
As powerful as data level parallelization is, it can be quite inflexible, as not all

applications have data that can be vectorized. Multithreading, or running a single

piece of software on multiple hardware threads, is much more powerful and versatile.

OpenMP provides an easy interface for using multithreading within C programs.

Some examples of OpenMP directives:



2 Amdahl’s Law, TLP

• The parallel directive indicates that each thread should run a copy of the

code within the block. If a for loop is put within the block, every thread will

run every iteration of the for loop.

#pragma omp parallel {

...

}

• The parallel for directive will split up iterations of a for loop over various

threads. Every thread will run different iterations of the for loop. The

following two code snippets are equivalent.

#pragma omp parallel for

for (int i = 0; i < n; i++) {

...

}

#pragma omp parallel {

#pragma omp for

for (int i =0; i < n; i++) { ... }

}

There are two functions you can call that may be useful to you:

• int omp_get_thread_num() will return the number of the thread executing

the code

• int omp_get_num_threads() will return the number of total hardware threads

executing the code

2.1 For each question below, state and justify whether the program is sometimes

incorrect, always incorrect, slower than serial, faster than serial, or none

of the above. Assume the default number of threads is greater than 1. Assume

no thread will complete before another thread starts executing. Assume arr is an

int[] of length n.

(a) // Set element i of arr to i

#pragma omp parallel

{

for (int i = 0; i < n; i++)

arr[i] = i;

}

(b) // Set arr to be an array of Fibonacci numbers.

arr[0] = 0;

arr[1] = 1;

#pragma omp parallel for

for (int i = 2; i < n; i++)

arr[i] = arr[i-1] + arr[i - 2];

(c) // Set all elements in arr to 0;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

arr[i] = 0;



Amdahl’s Law, TLP 3

2.2 What potential issue can arise from this code?

1 // Decrements element i of arr. n is a multiple of omp_get_num_threads()

2 #pragma omp parallel

3 {

4 int threadCount = omp_get_num_threads();

5 int myThread = omp_get_thread_num();

6 for (int i = 0; i < n; i++) {

7 if (i % threadCount == myThread) arr[i] -= 1;

8 }

9 }

2.31 // Assume n holds the length of arr

2 double fast_product(double *arr, int n) {

3 double product = 1;

4 #pragma omp parallel for

5 for (int i = 0; i < n; i++) {

6 product *= arr[i];

7 }

8 return product;

9 }

(a) What is wrong with this code?

(b) Fix the code using #pragma omp critical

(c) Fix the code using #pragma omp reduction(operation: var).


	Amdahl's Law
	Thread-Level Parallelism

