
CS 61C I/O, RAID, ECC
Summer 2019 Discussion 14: August 12, 2019

1 Polling & Interrupts
1.1 Fill out this table that compares polling and interrupts.

Operation Definition Pro/Good for Con

Polling
Forces the hardware to

wait on ready bit (alter-

natively, if timing of de-

vice is known, the ready

bit can be polled at the

frequency of the device).

• Low Latency

• Low overhead when

data is available

• Good For: devices that

are always busy or

when you cant make

progress until the de-

vice replies

• Cant do anything else

while polling

• Cant sleep while

polling (CPU always

at full speed)

Interrupts
Hardware fires an “excep-

tion” when it becomes

ready. CPU changes PC

register to execute code

in the interrupt handler

when this occurs.

• Can do useful work

while waiting for re-

sponse

• Can wait on many

things at once

• Good for: Devices that

take a long time to

respond, especially if

you can do other work

while waiting.

• Nondeterministic when

interrupt occurs

• interrupt handler has

some overhead (e.g.

saves all registers, flush

pipeline, etc.)

• Higher latency per

event

• Worse throughput

2 Memory Mapped I/O
2.1 For this question, the following addresses correspond to registers in some I/O devices

and not regular user memory.

• 0xFFFF0000—Receiver Control: LSB is the ready bit (in the context of polling),

there may be other bits set that we dont need right now.

• 0xFFFF0004—Receiver Data: Received data stored at lowest byte.

• 0xFFFF0008—Transmitter Control: LSB is the ready bit (in the context of

polling), there may be other bit set that we dont need right now.

• 0xFFFF000C—Transmitter Data: Transmitted data stored at lowest byte.

Recall that receiver will only have data for us when the corresponding ready bit

is 1, and that we can only write data to the transmitter when its ready bit is 1.



2 I/O, RAID, ECC

Write RISC-V code that reads byte from the receiver (busy-waiting if necessary)

and writes that byte to the transmitter (busy-waiting if necessary).

lui t0 0xffff0

receive_wait: lw t1 0(t0)

andi t1 t1 1 # poll on ready of receiver

beq t1 x0 receive_wait

lb t2 4(t0) # load data

transmit_wait: lw t1 8(t0) # poll on ready of transmitter

andi t1 t1 1

beq t1 x0 transmit_wait # write to transmitter

sb t2 12(t0)

3 RAID
3.1 Fill out the following table:

Configuration Pro/Good for Con/Bad for

RAID 0
Split data across multiple

disks

No overhead, fast read /

write

Reliability

RAID 1
Mirrored Disks: Extra

copy of data

Fast read / write, Fast re-

covery

High overhead → expen-

sive

RAID 2
Hamming ECC: Bit-level

striping, one disk per par-

ity group

Smaller overhead Redundant check disks

RAID 3
Byte-level striping with

single parity disk.

Smallest overhead to

check parity

Need to read all disks,

even for small reads, to

detect errors

RAID 4
Block-level striping with

single parity disk.

Higher throughput for

small reads

Still slow small writes (A

single check disk is a bot-

tleneck)

RAID 5
Block-level striping, par-

ity distributed across

disks.

Higher throughput of

small writes

The time to repair a disk

is so long that another

disk might fail in the

meantime.

4 Hamming ECC
Recall the basic structure of a Hamming code. We start out with some bitstring,

and then add parity bits at the indices that are powers of two (1, 2, 8, etc.). We



I/O, RAID, ECC 3

don’t assign values to these parity bits yet. Note that the indexing convention

used for Hamming ECC is different from what you are familiar with. In

particular, the 1 index represents the MSB, and we index from left-to-right. The ith

parity bit P{i} covers the bits in the new bitstring where the index of the bit under

the aforementioned convention, j, has a 1 at the same position as i when represented

as binary. For instance, 4 is 0b100 in binary. The integers j that have a 1 in the

same position when represented in binary are 4, 5, 6, 7, 12, 13, etc. Therefore, P4

covers the bits at indices 4, 5, 6, 7, 12, 13, etc. A visual representation of this is:

Source: https://en.wikipedia.org/wiki/Hamming code

4.1 How many bits do we need to add to 00112 to allow single error correction?

3 parity bits

4.2 Which locations in 00112 would parity bits be included?

Using P to represent parity bits: PP0P0112

4.3 Which bits does each parity bit cover in 00112?

Parity bit 1: 1, 3, 5, 7

Parity bit 2: 2, 3, 6, 7

Parity bit 3: 4, 5, 6, 7

4.4 Write the completed coded representation for 00112 to enable single error correction.

Assume that we set the parity bits so that the bits they cover have even parity.

10000112

4.5 How can we enable an additional double error detection on top of this?

Add an additional parity bit over the entire sequence.

4.6 Find the original bits given the following SEC Hamming Code: 01101112. Again,

assume that the parity bits are set so that the bits they cover have even parity.

Parity group 1: error

Parity group 2: okay

Parity group 4: error

Incorrect bit: 1 + 4 = 5, change bit 5 from 1 to 0: 01100112

01100112 → 10112

4.7 Find the original bits given the following SEC Hamming Code: 10010002

https://en.wikipedia.org/wiki/Hamming_code


4 I/O, RAID, ECC

Parity group 1: error

Parity group 2: okay

Parity group 4: error

Incorrect bit: 1 + 4 = 5, change bit 5 from 1 to 0: 10011002

10011002 → 01002


	Polling & Interrupts
	Memory Mapped I/O
	RAID
	Hamming ECC

