
CS 61C More Advanced C, Memory
Management
Spring 2019 Discussion 2: July 1, 2019

1 Advanced C
Suppose we’ve defined a linked list struct as follows. Assume *lst points to the

first element of the list, or is NULL if the list is empty.

struct ll_node {

int first;

struct ll_node* rest;

}

1.1 Implement prepend, which adds one new value to the front of the linked list. Hint:

why use ll node ∗ ∗ lst instead of ll node∗lst?

1 void prepend(struct ll_node** lst, int value) {

2 struct ll_node* item = (struct ll_node*) malloc(sizeof(struct ll_node));

3 item->first = value;

4 item->rest = *lst;

5 *lst = item;

6 }

1.2 Implement free_ll, which frees all the memory consumed by the linked list.

1 void free_ll(struct ll_node** lst) {

2 if (*lst) {

3 free_ll(&((*lst)->rest));

4 free(*lst);

5 }

6 *lst = NULL; // Make writes to **lst fail instead of writing to unusable memory.

7 }

2 Memory Management
2.1 For each part, choose one or more of the following memory segments where the data

could be located: code, static, heap, stack.

(a) Static variables

Static

(b) Local variables

2 More Advanced C, Memory Management

Stack

(c) Global variables

Static

(d) Constants

Code, static, or stack

Constants can be compiled directly into the code. x = x + 1 can compile with

the number 1 stored directly in the machine instruction in the code. That

instruction will always increment the value of the variable x by 1, so it can be

stored directly in the machine instruction without reference to other memory.

This can also occur with pre-processor macros.

1 #define y 5

2

3 int plus_y(int x) {

4 x = x + y;

5 return x;

6 }

Constants can also be found in the stack or static storage depending on if it’s

declared in a function or not.

1 const int x = 1;

2

3 int sum(int* arr) {

4 int total = 0;

5 ...

6 }

In this example, x is a variable whose value will be stored in the static storage,

while total is a local variable whose value will be stored on the stack. Variables

declared const are not allowed to change, but the usage of const can get more

tricky when combined with pointers.

(e) Machine Instructions

Code

(f) Result of malloc

Heap

(g) String Literals

Static or stack.

When declared in a function, string literals can be stored in different places.

char* s = "string" is stored in the static memory segment while char[7] s

= "string" will be stored in the stack.

2.2 Write the code necessary to allocate memory on the heap in the following scenarios

More Advanced C, Memory Management 3

(a) An array arr of k integers

arr = (int *) malloc(sizeof(int) * k);

(b) A string str containing p characters

str = (char *) malloc(sizeof(char) * (p + 1)); Don’t forget the null ter-

minator!

(c) An n×m matrix mat of integers initialized to zero.

mat = (int *) calloc(n * m, sizeof(int));

Alternative solution. This might be needed if you wanted to efficiently permute

the rows of the matrix.

1 mat = (int **) calloc(n, sizeof(int *));

2 for (int i = 0; i < n; i++)

3 mat[i] = (int *) calloc(m, sizeof(int));

2.3 What is wrong with the C code below?

1 int* pi = malloc(314 * sizeof(int));

2 if (!raspberry) {

3 pi = malloc(1 * sizeof(int));

4 }

5 return pi;

There’s a memory leak if raspberry is false as the original value of pi will be

unreachable.

	Advanced C
	Memory Management

