
CS 61C RISC-V Introduction
Summer 2019 Discussion 3: July 3, 2019

1 RISC-V: A Rundown
RISC-V is an assembly language, which is comprised of simple instructions that

each do a single task such as addition or storing a chunk of data to memory.

For example, on the left is a line of C code and on the right is a chunk of RISC-V

code that accomplishes the same thing.

int x = 5, y[2];

y[0] = x;

y[1] = x * x;

// x -> s0, &y -> s1

addi s0, x0, 5

sw s0, 0(s1)

mul t0, s0, s0

sw t0, 4(s1)

1.1 Can you figure out what each line in the RISC-V code is doing?

2 Registers
In RISC-V, we have two methods of storing data, one of them is main memory, the

other is through registers. Registers are much faster than using main memory, but

are very limited in space (32-bits). Note that you should ALWAYS use the named

registers (e.g. s0 rather than x8).

Register(s) Alt. Description

x0 zero The zero register, always zero

x1 ra The return address register, stores where functions should return

x2 sp The stack pointer, where the stack ends

x5-x7, x28-x31 t0-t6 The temporary registers

x8-x9, x18-x27 s0-s11 The saved registers

x10-x17 a0-a7 The argument registers, a0-a1 are also return value

2.1 Can you convert each instruction’s registers to the other form?

add s0, zero, a1 -->

or x18, x1, x30 -->



2 RISC-V Introduction

3 Basic Instructions
For your reference, here are a couple of the basic instructions for arithmetic operations

and dealing with memory:

Basic Operations:

[inst] [destination register] [argument register 1] [argument register 2]

add Adds the two argument registers and stores in destination register

xor Exclusive or’s the two argument registers and stores in destination register

mul Multiplies the two argument registers and stores in destination register

sll Logical left shifts AR1 by AR2 and stores in DR

srl Logical right shifts AR1 by AR2 and stores in DR

sra Arithmetic right shifts AR1 by AR2 and stores in DR

slt/u If AR1 < AR2, stores 1 in DR, otherwise stores 0, u does unsigned comparison

[inst] [register] [offset]([register with base address])

sw Stores the contents of the register to the address+offset in memory

lw Takes the contents of address+offset in memory and stores in the register

[inst] [argument register 1] [argument register 2] [label]

beq If AR1 == AR2, moves to label

bne If AR1 != AR2, moves to label

[inst] [destination register] [label]

jal Stores the current instruction’s address into DR and moves to label

You may also see that there is an ”i” at the end of certain instructions, such as addi,

slli, etc. This means that AR2 becomes an ”immediate” or an integer instead of

using a register.

3.1 Assume we have an array in memory that contains int* arr = {1,2,3,4,5,6,0}.
Let register s0 hold the address of the zeroth element in arr. You may assume

integers are four-bytes and our values are word-aligned. What do the snippets of

RISC-V code do? Assume that all the instructions are run one after the other in

the same context.

a) lw t0, 12(s0) -->

b) slli t1, t0, 2

add t2, s0, t1

lw t3, 0(t2) -->

addi t3, t3, 1

sw t3, 0(t2)

c) lw t0, 0(s0)

xori t0, t0, 0xFFF -->

addi t0, t0, 1



RISC-V Introduction 3

3.2 Assume that s0 and s1 contain signed integers. While only using the instructions

(and their ”i” forms) given above, how can we branch on the following conditions?

s0 < s1 s0 ≥ s1 s0 > 1

4 C to RISC-V
4.1 Translate between the C and RISC-V verbatim

C RISC-V

// s0 -> a, s1 -> b

// s2 -> c, s3 -> z

int a = 4, b = 5, c = 6, z;

z = a + b + c + 10;

// s0 -> int * p = intArr;

// s1 -> a;

*p = 0;

int a = 2;

p[1] = p[a] = a;

// s0 -> a, s1 -> b

int a = 5, b = 10;

if(a + a == b) {

a = 0;

} else {

b = a - 1;

}

addi s0, x0, 0

addi s1, x0, 1

addi t0, x0, 30

loop:

beq s0, t0, exit

add s1, s1, s1

addi s0, s0, 1

jal x0, loop

exit:



4 RISC-V Introduction

// s0 -> n, s1 -> sum

// assume n > 0 to start

for(int sum = 0; n > 0; n--) {

sum += n;

}


	RISC-V: A Rundown
	Registers
	Basic Instructions
	C to RISC-V

