
CS 61C CALL, Floating Point
Summer 2019 Discussion 4: June 10, 2019

1 CALL
The following is a diagram of the CALL stack detailing how C programs are built

and executed by machines:

C program: foo.c

Compiler

Assembly program: foo.a

Assembler

Object Code: foo.o

Linker lib.o

Executable a.out

(Machine Language)

Loader

Memory

1.1 What is the Stored Program concept and what does it enable us to do?

1.2 How many passes through the code does the Assembler have to make? Why?

1.3 Describe the six main parts of the object files outputed by the Assembler (Header,

Text, Data, Relocation Table, Symbol Table, Debugging Information).

1.4 Which step in CALL resolves relative addressing? Absolute addressing?



2 CALL, Floating Point

1.5 What does RISC stand for? How is this related to pseudoinstructions?

2 Floating Point
The IEEE 754 standard defines a binary representation for floating point values

using three fields.

• The sign determines the sign of the number (0 for positive, 1 for negative).
• The exponent is in biased notation. For instance, the bias is 127 for single-

precision floating point numbers.
• The significand or mantissa is akin to unsigned integers, but used to store a

fraction instead of an integer.

The below table shows the bit breakdown for the single precision (32-bit) represen-

tation. The leftmost bit is the MSB and the rightmost bit is the LSB.

1 8 23

Sign Exponent Mantissa/Significand/Fraction

For normalized floats:

Value = (−1)Sign ∗ 2Exp−Bias ∗ 1.significand2

For denormalized floats:

Value = (−1)Sign ∗ 2Exp−Bias+1 ∗ 0.significand2

Exponent Significand Meaning

0 Anything Denorm

1-254 Anything Normal

255 0 Infinity

255 Nonzero NaN

Note that in the above table, our exponent has values from 0 to 255. When

translating between binary and decimal floating point values, we must remember

that there is a bias for the exponent.

2.1 How many zeroes can be represented using a float?

2.2 What is the largest finite positive value that can be stored using a single precision

float?

2.3 What is the smallest positive value that can be stored using a single precision float?

2.4 What is the smallest positive normalized value that can be stored using a single

precision float?

2.5 Cover the following single-precision floating point numbers from binary to decimal

or from decimal to binary. You may leave your answer as an expression.



CALL, Floating Point 3

• 0x00000000

• 8.25

• 0x00000F00

• 39.5625

• 0xFF94BEEF

• -∞

3 More Floating Point Representation
Not every number can be represented perfectly using floating point. For example, 1

3

can only be approximated and thus must be rounded in any attempt to represent it.

For this question, we will only look at positive numbers.

3.1 What is the next smallest number larger than 2 that can be represented completely?

3.2 What is the next smallest number larger than 4 that can be represented completely?

3.3 Define stepsize to be the distance between some value x and the smallest value larger

than x that can be completely represented. What is the step size for 2? 4?

3.4 Now let’s see if we can generalize the stepsize for normalized numbers (we can do so

for denorms as well, but we won’t in this question). If we are given a normalized

number that is not the largest representable normalized number with exponent value

x and with significand value y, what is the stepsize at that value? Hint: There are

23 significand bits.

3.5 Now let’s apply this technique. What is the largest odd number that we can repre-

sent? Part 3 should be very useful in finding this answer.


	CALL
	Floating Point
	More Floating Point Representation

