
CS 61C CALL, Floating Point
Summer 2019 Discussion 4: June 10, 2019

1 CALL
The following is a diagram of the CALL stack detailing how C programs are built

and executed by machines:

C program: foo.c

Compiler

Assembly program: foo.a

Assembler

Object Code: foo.o

Linker lib.o

Executable a.out

(Machine Language)

Loader

Memory

1.1 What is the Stored Program concept and what does it enable us to do?

It is the idea that instructions are just the same as data, and we can treat them as

such. This enables us to write programs that can manipulate other programs!

1.2 How many passes through the code does the Assembler have to make? Why?

Two, one to find all the label addresses and another to convert all instructions while

resolving any forward references using the collected label addresses.

1.3 Describe the six main parts of the object files outputed by the Assembler (Header,

Text, Data, Relocation Table, Symbol Table, Debugging Information).

• Header: Size and position of other parts

• Text: The machine code

• Data: Binary representation of any data in the source file



2 CALL, Floating Point

• Relocation Table: Identifies lines of code that need to be “handled” by Linker

(jumps to external labels (e.g. lib files), reference to static data)

• Symbol Table: List of file labels and data that can be referenced across files

• Debugging Information: Additional information for debuggers

1.4 Which step in CALL resolves relative addressing? Absolute addressing?

Assembler, linker

1.5 What does RISC stand for? How is this related to pseudoinstructions?

Reduced Instruction Set Computing. Minimal set of instructions leads to many

lines of code. Pseudoinstructions are more complex instructions intended to make

assembly programming easier for the coder. These are converted to basic instructions

by the assembler.

2 Floating Point
The IEEE 754 standard defines a binary representation for floating point values

using three fields.

• The sign determines the sign of the number (0 for positive, 1 for negative).
• The exponent is in biased notation. For instance, the bias is 127 for single-

precision floating point numbers.
• The significand or mantissa is akin to unsigned integers, but used to store a

fraction instead of an integer.

The below table shows the bit breakdown for the single precision (32-bit) represen-

tation. The leftmost bit is the MSB and the rightmost bit is the LSB.

1 8 23

Sign Exponent Mantissa/Significand/Fraction

For normalized floats:

Value = (−1)Sign ∗ 2Exp−Bias ∗ 1.significand2

For denormalized floats:

Value = (−1)Sign ∗ 2Exp−Bias+1 ∗ 0.significand2

Exponent Significand Meaning

0 Anything Denorm

1-254 Anything Normal

255 0 Infinity

255 Nonzero NaN

Note that in the above table, our exponent has values from 0 to 255. When

translating between binary and decimal floating point values, we must remember

that there is a bias for the exponent.

2.1 How many zeroes can be represented using a float?

2



CALL, Floating Point 3

2.2 What is the largest finite positive value that can be stored using a single precision

float?

0x7F7FFFFF = (1 + (1− 2−23)) ∗ 2127

The mantissa for the largest value will be 23 1’s. This corresponds to a value of

.11 . . . 1 = 2−1 + 2−2 + · · ·+ 2−23 = 2−23(222 + 221 + · · ·+ 1)

Here, we apply the formula that
∑n−1

i=0 2i = 2n − 1, so we have that the mantissa is

2−23(222 + 221 + · · ·+ 1) = 2−23(223 − 1) = 1− 2−23

We have 1 + (1− 2−23) since we this is a normalized number and thus has a 1 to

the left of the decimal point.

2.3 What is the smallest positive value that can be stored using a single precision float?

0x00000001 = 2−23 ∗ 2−126

2.4 What is the smallest positive normalized value that can be stored using a single

precision float?

0x00800000 = 2−126

2.5 Cover the following single-precision floating point numbers from binary to decimal

or from decimal to binary. You may leave your answer as an expression.

• 0x00000000

0

• 8.25

0x41040000

• 0x00000F00

(2−12 + 2−13 + 2−14 + 2−15) ∗ 2−126

• 39.5625

0x421E4000

• 0xFF94BEEF

NaN

• -∞

0xFF800000

3 More Floating Point Representation
Not every number can be represented perfectly using floating point. For example, 1

3

can only be approximated and thus must be rounded in any attempt to represent it.

For this question, we will only look at positive numbers.

3.1 What is the next smallest number larger than 2 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This

is the same as incrementing the significand by 1 at the rightmost location.



4 CALL, Floating Point

(1 + 2−23) ∗ 2 = 2 + 2−22

3.2 What is the next smallest number larger than 4 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This

is the same as incrementing the significand by 1 at the rightmost location.

(1 + 2−23) ∗ 4 = 4 + 2−21

3.3 Define stepsize to be the distance between some value x and the smallest value larger

than x that can be completely represented. What is the step size for 2? 4?

This would be the amount added in part 1. This gives 2−22 and 2−21.

3.4 Now let’s see if we can generalize the stepsize for normalized numbers (we can do so

for denorms as well, but we won’t in this question). If we are given a normalized

number that is not the largest representable normalized number with exponent value

x and with significand value y, what is the stepsize at that value? Hint: There are

23 significand bits.

Here we need to generalize the solution we got in 1 and 2. However, this is the same

approach just increment the signifcand by the 1.

curr number = 2x−127 + 2x−127 ∗ y
next number = 2x−127 + 2x−127 ∗ y + 2x−127 ∗ 2−23

stepsize = next number − curr number = 2x−150

3.5 Now let’s apply this technique. What is the largest odd number that we can

represent? Part 3 should be very useful in finding this answer.

To find the largest odd number we can represent, we want to find when odd numbers

will stop appearing. This will be with step size of 2.

As a result, plugging into 3: 2 = 2x−150 → x = 151

This means the number before 2151−127 was a distance of 1 (it is the first value

whose stepsize is 2) and no number after will be odd. Thus, the odd number is

simply subtracting the previous step size of 1.This gives,

224 − 1


	CALL
	Floating Point
	More Floating Point Representation

