
CS 61C RISC-V Pipelining and Hazards
Summer 2019 Discussion 8: July 22, 2019

1 Pipelining Registers
In order to pipeline, we add registers between the five datapath stages. Label each

of the five stages (IF, ID, EX, MEM, and WB) on the diagram below.

1.1 What is the purpose of the new registers?

1.2 Why do we add +4 to the PC again in the memory stage?

1.3 Why do we need to save the instruction in a register multiple times?

2 RISC-V Pipelining and Hazards

2 Performance Analysis

Register clk-to-q 30 ps

Register setup 20 ps

Mux 25 ps

Branch comp. 75 ps

ALU 200 ps

Memory read 250 ps

Memory write 200 ps

RegFile read 150 ps

RegFile setup 20 ps

2.1 With the delays provided above for each of the datapath components, what would

be the fastest possible clock time for a single cycle datapath?

2.2 What is the fastest possible clock time for a pipelined datapath?

2.3 What is the speedup from the single cycle datapath to the pipelined datapath? Why

is the speedup less than 5?

3 Hazards
One of the costs of pipelining is that it introduces three types of pipeline hazards:

structural hazards, data hazards, and control hazards.

Structural Hazards
Structural hazards occur when more than one instruction needs to use the same

datapath resource at the same time. There are two main causes of structural hazards:

Register File The register file is accessed both during ID, when it is read, and

during WB, when it is written to. We can solve this by having separate

read and write ports. To account for reads and writes to the same register,

processors usually write to the register during the first half of the clock cycle,

and read from it during in the second half. This is also known as double

pumping.

Memory Memory is accessed for both instructions and data. Having a separate

instruction memory (abbreviated IMEM) and data memory (abbreviated

DMEM) solves this hazard.

Something to remember about structural hazards is that they can always be resolved

by adding more hardware.

RISC-V Pipelining and Hazards 3

Data Hazards
Data hazards are caused by data dependencies between instructions. In CS 61C,

where we will always assume that instructions are always going through the processor

in order, we see data hazards when an instruction reads a register before a previous

instruction has finished writing to that register.

Forwarding

Most data hazards can be resolved by forwarding, which is when the result of the

EX or MEM stage is sent to the EX stage for a following instruction to use.

3.1 Look for data hazards in the code below, and figure out how forwarding could be

used to solve them.

Instruction C1 C2 C3 C4 C5 C6 C7

1. addi t0, a0, -1 IF ID EX MEM WB

2. and s2, t0, a0 IF ID EX MEM WB

3. sltiu a0, t0, 5 IF ID EX MEM WB

3.2 Imagine you are a hardware designer working on a CPU’s forwarding control logic.

How many instructions after the addi instruction could be affected by data hazards

created by this addi instruction?

Stalls

3.3 Look for data hazards in the code below. One of them cannot be solved with

forwarding—why? What can we do to solve this hazard?

Instruction C1 C2 C3 C4 C5 C6 C7 C8

1. addi s0, s0, 1 IF ID EX MEM WB

2. addi t0, t0, 4 IF ID EX MEM WB

3. lw t1, 0(t0) IF ID EX MEM WB

4. add t2, t1, x0 IF ID EX MEM WB

3.4 Say you are the compiler and can re-order instructions to minimize data hazards

while guaranteeing the same output. How can you fix the code above?

4 RISC-V Pipelining and Hazards

Detecting Data Hazards

Say we have the rs1, rs2, RegWEn, and rd signals for two instructions - instruction

n and instruction n+ 1 - and we wish to determine if a data hazard exists across the

instructions. We can simply check to see if the rd for instruction n matches either

rs1 or rs2 of instruction n + 1, indicating that such a hazard exists (think, why

does this make sense?). We could then use our hazard detection to determine which

forwarding paths/number of stalls (if any) are necessary to take to ensure proper

instruction execution. In pseudo-code, this could look something like the following:

if (rs1(n + 1) == rd(n) || rs2(n + 1) == rd(n) && RegWen(n) == 1) {

forward ALU output of instruction n

}

Control Hazards
Control hazards are caused by jump and branch instructions, because for all

jumps and some branches, the next PC is not PC + 4, but the result of the

computation completed in the EX stage. We could stall the pipeline for control

hazards, but this decreases performance.

3.5 Besides stalling, what can we do to resolve control hazards?

Extra for Experience
3.6 Given the RISC-V code above and a pipelined CPU with no forwarding, how many

hazards would there be? What types are each hazard? Consider all possible hazards

from all pairs of instructions.

How many stalls would there need to be in order to fix the data hazard(s)? What

about the control hazard(s)?

Instruction C1 C2 C3 C4 C5 C6 C7 C8 C9

1. sub t1, s0, s1 IF ID EX MEM WB

2. or s0, t0, t1 IF ID EX MEM WB

3. sw s1, 100(s0) IF ID EX MEM WB

4. bgeu s0, s2, l IF ID EX MEM WB

5. add t2, x0, x0 IF ID EX MEM WB

	Pipelining Registers
	Performance Analysis
	Hazards

