
CS 61C Caches
Summer 2019 Discussion 9: July 24, 2019

1 Understanding T/I/O
When working with caches, we have to be able to break down the memory addresses

we work with to understand where they fit into our caches. There are three fields:

Tag - Used to distinguish different blocks that use the same index - Number of bits:

leftovers

Index - The set that this piece of memory will be placed in - Number of bits: log2(#

of indices)

Offset - The location of the byte in the block - Number of bits: log2(size of block)

Given these definitions, the following is true:

log2(memory size) = address bit-width = # tag bits + # index bits + # offset bits

Another useful equality to remember is:

cache size = block size ∗ num blocks

1.1 Assume we have a direct-mapped byte-addressed cache with capacity 32B and block

size of 8B. Of the 32 bits in each address, which bits do we use to find the index of

the cache to use?

1.2 Which bits are our tag bits? What about our offset?

1.3 Classify each of the following byte memory accesses as a cache hit (H), cache miss

(M), or cache miss with replacement(R). It is probably best to try drawing out

the cache before going through so that you can have an easier time seeing the

replacements in the cache. The following white space is to do this:

Address T/I/O Hit, Miss, Replace

0x00000004

0x00000005

0x00000068

0x000000C8

0x00000068

0x000000DD

0x00000045

0x00000004

0x000000C8



2 Caches

2 The 3 C’s of Misses
2.1 Classify each M and R above as one of the 3 types of misses described below:

I. Compulsory: First time you ask the cache for a certain block. A miss that must

occur when you first bring in a block. Reduce compulsory misses by having a

longer cache lines (bigger blocks), which bring in the surrounding addresses

along with our requested data. Can also pre-fetch blocks beforehand using a

hardware prefetcher (a special circuit that tries to guess the next few blocks

that you will want).

II. Conflict: Occurs if, hypothetically, you went through the ENTIRE string of

accesses with a fully associative cache and wouldn’t have missed for that specific

access. Increasing the associativity or improving the replacement policy would

remove the miss.

III. Capacity: The only way to remove the miss is to increase the cache capacity, as

even with a fully associative cache, we had to kick a block out at some point.

Note: There are many different ways of fixing misses. The name of the miss doesn’t

necessarily tell us the best way to reduce the number of misses.

3 Code Analysis
Given the follow chunk of code, analyze the hit rate given that we have a byte-

addressed computer with a total memory of 1 MiB. It also features a 16 KiB

Direct-Mapped cache with 1 KiB blocks. Assume that your cache begins cold.

#define NUM_INTS 8192 // 2ˆ13

int A[NUM_INTS]; // A lives at 0x10000

int i, total = 0;

for (i = 0; i < NUM_INTS; i += 128) {

A[i] = i; // Line 1

}

for (i = 0; i < NUM_INTS; i += 128) {

total += A[i]; // Line 2

}

3.1 How many bits make up a memory address on this computer?

3.2 What is the T:I:O breakdown?

3.3 Calculate the cache hit rate for the line marked Line 1:

3.4 Calculate the cache hit rate for the line marked Line 2:



Caches 3

4 Cache Associativity
In the previous problems, we have a Direct-Mapped cache, in which blocks map to

specifically one slot in our cache. This is good for quick replacement and finding out

block, but not good for efficiency of space!

This is where we bring associativity into the matter. We define associativity as

the number of slots a block can potentially map to in our cache. Thus, a Fully-

Associative cache has the most associativity, meaning every block can go anywhere

in the cache.

For an N -way associative cache, the following is true:

N ∗ # sets = # blocks

4.1 Heres some practice involving a 2-way set associative cache. This time we have

an 8-bit address space, 8 B blocks, and a cache size of 32 B. Classify each of the

following accesses as a cache hit (H), cache miss (M) or cache miss with replacement

(R). For any misses, list out which type of miss it is.

Address T/I/O Hit, Miss, Replace

0b0000 0100

0b0000 0101

0b0110 1000

0b1100 1000

0b0110 1000

0b1101 1101

0b0100 0101

0b0000 0100

0b1100 1000

4.2 What is the hit rate of our above accesses?


	Understanding T/I/O
	The 3 C's of Misses
	Code Analysis
	Cache Associativity

