
CS 61C Floating Point
Summer 2020 Discussion 3: June 29, 2020

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 True or False. The goals of floating point are to have a large range of values, a low

amount of precision, and real arithmetic results

False. Although floating point DOES

- Provide support for a wide range of values. (Both very small and very large)

- Help programmers deal with errors in real arithmetic because floating point can

represent + ∞, -∞, NaN (Not a number)

Floating point actually has HIGH precision. Recall that precision is a count of the

number of bits in a computer word used to represent a value. Floating point helps

you keep as much precision as possible because we have so much freedom to interpret

our bits as whatever negative powers of 2 are useful for specifying the number.

1.2 True or False. The distance between floating point numbers increase as the absolute

value of the numbers increase.

True. The uneven spacing is due to the exponent representation of floating point

numbers. There are a fixed number of bits in the significand. In IEEE 32 bit storage

there are 23 bits for the significand, which means the LSB is 2−22 times the MSB.

If the exponent is zero (after allowing for the offset) the difference between two

neighboring floats will be 2−22. If the exponent is 8, the difference between two

neighboring floats will be 2−14 because the mantissa is multiplied by 28. Limited

precision makes binary floating-point numbers discontinuous; there are gaps between

them.

1.3 True or False. Floating Point addition is associative.

False. Because of rounding errors, you can find Big and Small numbers such that:

(Small + Big) + Big != Small + (Big + Big)

FP approximates results because it only has 23 bits for Significand

2 Floating Point
The IEEE 754 standard defines a binary representation for floating point values

using three fields.

• The sign determines the sign of the number (0 for positive, 1 for negative).



2 Floating Point

• The exponent is in biased notation. For instance, the bias is -127 which

comes from -(28−1 − 1) for single-precision floating point numbers.
• The significand or mantissa is akin to unsigned integers, but used to store a

fraction instead of an integer.

The below table shows the bit breakdown for the single precision (32-bit) represen-

tation. The leftmost bit is the MSB and the rightmost bit is the LSB.

1 8 23

Sign Exponent Mantissa/Significand/Fraction

For normalized floats:

Value = (−1)Sign ∗ 2Exp+Bias ∗ 1.significand2

For denormalized floats:

Value = (−1)Sign ∗ 2Exp+Bias+1 ∗ 0.significand2

Exponent Significand Meaning

0 Anything Denorm

1-254 Anything Normal

255 0 Infinity

255 Nonzero NaN

Note that in the above table, our exponent has values from 0 to 255. When

translating between binary and decimal floating point values, we must remember

that there is a bias for the exponent.

2.1 How many zeroes can be represented using a float?

2; one ”positive” zero and one ”negative” zero.

2.2 What is the largest finite positive value that can be stored using a single precision

float?

0x7F7FFFFF = (1 + (1− 2−23)) ∗ 2127

The mantissa for the largest value will be 23 1’s. This corresponds to a value of

.11 . . . 1 = 2−1 + 2−2 + · · ·+ 2−23 = 2−23(222 + 221 + · · ·+ 1)

Here, we apply the formula that
∑n−1

i=0 2i = 2n − 1, so we have that the mantissa is

2−23(222 + 221 + · · ·+ 1) = 2−23(223 − 1) = 1− 2−23

We have (1 + (1− 2−23)) ∗ 2127. Since this is a normalized number, it has a 1 to the

left of the decimal point.

2.3 What is the smallest positive value that can be stored using a single precision float?

0x00000001 = 2−23 ∗ 2−126

2.4 What is the smallest positive normalized value that can be stored using a single

precision float?



Floating Point 3

0x00800000 = 2−126

2.5 Cover the following single-precision floating point numbers from binary to decimal

or from decimal to binary. You may leave your answer as an expression.

• 0x00000000

0

• 8.25

0x41040000

• 0x00000F00

(2−12 + 2−13 + 2−14 + 2−15) ∗ 2−126

• 39.5625

0x421E4000

• 0xFF94BEEF

NaN

• -∞

0xFF800000

3 More Floating Point Representation
Not every number can be represented perfectly using floating point. For example, 1

3

can only be approximated and thus must be rounded in any attempt to represent it.

For this question, we will only look at positive numbers.

3.1 What is the next smallest number larger than 2 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This

is the same as incrementing the significand by 1 at the rightmost location.

(1 + 2−23) ∗ 2 = 2 + 2−22

3.2 What is the next smallest number larger than 4 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This

is the same as incrementing the significand by 1 at the rightmost location.

(1 + 2−23) ∗ 4 = 4 + 2−21

3.3 Define stepsize to be the distance between some value x and the smallest value larger

than x that can be completely represented. What is the step size for 2? 4?

This would be the amount added in part 1. This gives 2−22 and 2−21.

3.4 Now let’s see if we can generalize the stepsize for normalized numbers (we can do so

for denorms as well, but we won’t in this question). If we are given a normalized

number that is not the largest representable normalized number with exponent value

x and with significand value y, what is the stepsize at that value? Hint: There are

23 significand bits.



4 Floating Point

Here we need to generalize the solution we got in 1 and 2. However, this is the same

approach just increment the signifcand by the 1.

curr number = 2x−127 + 2x−127 ∗ y
next number = 2x−127 + 2x−127 ∗ y + 2x−127 ∗ 2−23

stepsize = next number − curr number = 2x−150

3.5 Now let’s apply this technique. What is the largest odd number that we can

represent? Part 4 should be very useful in finding this answer.

To find the largest odd number we can represent, we want to find when odd numbers

will stop appearing. This will be with step size of 2.

As a result, plugging into Part 4: 2 = 2x−150 → x = 151

This means the number before 2151−127 was a distance of 1 (it is the first value

whose stepsize is 2) and no number after will be odd. Thus, the odd number is

simply subtracting the previous step size of 1.This gives,

224 − 1


	Pre-Check
	Floating Point
	More Floating Point Representation

