Sequential Digital Logic

Instructor: Sean Farhat
Great Idea #1: Levels of Representation & Interpretation

Higher-Level Language Program (e.g. C) → Compiler → Assembly Language Program (e.g. RISCV) → Assembler → Machine Language Program (RISCV) → Machine Interpretation

- **Compiler**
 - temp = v[k];
 - v[k] = v[k+1];
 - v[k+1] = temp;

- **Assembler**
 - lw t0, 0(x2)
 - lw t1, 4(x2)
 - sw t1, 0(x2)
 - sw t0, 4(x2)

- **Machine Interpretation**
 - lw t0, 0(x2)
 - lw t1, 4(x2)
 - sw t1, 0(x2)
 - sw t0, 4(x2)

- **Hardware Architecture Description**
 - (e.g. block diagrams)

- **Architecture Implementation**

- **Logic Circuit Description**
 - (Circuit Schematic Diagrams)
Moore’s Law – The number of transistors on integrated circuit chips (1971-2018)

Moore’s law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore’s law.

The data visualization is available at OurWorldInData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-SA by the author Max Roser.
Review

• Combinational Logic

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Converting Combinational Logic

This is difficult to do efficiently!
Question: Which boolean equation represents the following circuit?

(A) $AB+BC+C$
(B) $AB+(B+C)BC$
(C) $(A+B)((BC)+(B+C))$
(D) Q
Question: Which boolean equation represents the following circuit?

(A) $AB + BC + C$
(B) $AB + (B+C)BC$
(C) $(A+B)((BC)+(B+C))$
(D) Q
Question: What is the MOST simplified Boolean Algebra expression for the following circuit?

(A) $B(A + C)$
(B) $B + AC$
(C) $AB + B + C$
(D) $A + C$
Question: What is the MOST simplified Boolean Algebra expression for the following circuit?

(A) $B (A + C)$

(B) $B + AC$

(C) $AB + B + C$

(D) $A + C$

By distributing the BC into $(B+C)$ we get:

$Q = AB + (BBC + CBC)$

Using the multiplicative idempotent law again we know that $B*B = B$ and that $C*C = C$ so we get:

$Q = AB + (BC + BC)$

Using the additive idempotent law $(B + B = B)$ we get:

$Q = AB + (BC + BC)$

By factoring out the B, we get the final answer of $Q = B(A+C)$
Agenda

• Muxes
• Sequential Logic Timing
• Maximum Clock Frequency
• Finite State Machines
• Functional Units
• Summary

Bonus Slides
• Logisim Intro
Data Multiplexor

• Multiplexor ("MUX") is a selector
 – Place one of multiple inputs onto output (N-to-1)
• Shown below is an n-bit 2-to-1 MUX
 – Input S selects between two inputs of n bits each

![Diagram of a 2-to-1 multiplexor]

- This input is passed to output if selector bits match shown value
- Represents that this wire has n bits

7/8/2020
CS 61C Su20 - Lecture 11
Implementing a 1-bit 2-to-1 MUX

• Schematic:

• Truth Table:

<table>
<thead>
<tr>
<th>s</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

• Boolean Algebra:

\[
c = \overline{s}ab + \overline{s}ab + s\overline{a}b + sab \\
= \overline{s}(ab + ab) + s(\overline{a}b + ab) \\
= \overline{s}(a(\overline{b} + b)) + s((\overline{a} + a)b) \\
= \overline{s}(a(1) + s((1)b)) \\
= \overline{s}a + sb
\]

• Circuit Diagram:
1-bit 4-to-1 MUX (1/2)

• Schematic:

• Truth Table: How many rows? \(2^6\)

• Boolean Expression:

\[
e = \neg s_1 \neg s_0 a + \neg s_1 s_0 b + s_1 \neg s_0 c + s_1 s_0 d
\]
1-bit 4-to-1 MUX (2/2)

- Can we leverage what we’ve previously built?
 - Alternative hierarchical approach:

```
  a 0 1
  b 0 1
  c 1 0
  d 1 1
```

```
  0 0  a
  0 1  b
  1 0  c
  1 1  d
```
Agenda

• Muxes
• **Sequential Logic Timing**
• Maximum Clock Frequency
• Finite State Machines
• Functional Units
• Summary

Bonus Slides
• Logisim Intro
Type of Circuits

• *Digital Systems* consist of two basic types of circuits:
 • Combinational Logic (CL)
 – Output is a function of the inputs only, not the history of its execution
 – e.g. circuits to add A, B (ALUs)
 • Sequential Logic (SL)
 – Circuits that “remember” or store information
 – a.k.a. “State Elements”
 – e.g. memory and registers (Registers)
Uses for State Elements

• Place to store values for some amount of time:
 – Register files (like in RISC-V)
 – Memory (caches and main memory)

• Help control flow of information between combinational logic blocks
 – State elements are used to hold up the movement of information at the inputs to combinational logic blocks and allow for orderly passage
Accumulator Example

An example of why we would need sequential logic

Want: $S = 0$;

for X_1, X_2, X_3 over time...

$S = S + X_i$

Assume:

- Each X value is applied in succession, one per cycle
- The sum since time 1 (cycle) is present on S
No!
1) How to control the next iteration of the ‘for’ loop?
2) How do we say: ‘S=0’?
Second Try: How About This?

A Register is the state element that is used here to hold up the transfer of data to the adder.
Registers

Same as registers in assembly:
- small memory storage locations

- Data input (can be various bit widths)
- Write Enable (can it be written to)
- Clock input (inputs active only on a clock “tick”)
- Data output (can be various bit widths)
- Reset (sets value to zero)
• **Signals** transmitted over wires continuously
• **Transmission is effectively instantaneous**
 – Implies that any wire only contains one value at any given time

Clock period
(CPU cycle time)

- Rising Edge
- Falling Edge

\[T = \frac{1}{freq} \approx 1 \text{ ns} \]
Signals and Waveforms

All signals change after clock “triggers”

Stack signals on top of each other
Dealing with Waveform Diagrams

• Easiest to start with CLK on top
 – Solve signal by signal, from inputs to outputs
 – Can only draw the waveform for a signal if *all* of its input waveforms are drawn

• When does a signal update?
 – A *state element* updates based on CLK triggers
 – A *combinational element* updates ANY time ANY of its inputs changes
A group of wires when interpreted as a bit field is called a **bus**.
Second Try: How About This?

Rough timing ...

Delay through Adder
Register Internals

- n instances of a “Flip-Flop”
 - Output flips and flops between 0 and 1
- Specifically this is a “D-type Flip-Flop”
 - D is “data input”, Q is “data output”
 - In reality, has 2 outputs (Q and Q̅), but we only care about 1
Flip-Flop Timing Behavior (1/2)

- Edge-triggered D-type flip-flop
 - This one is “rising edge-triggered”
- “On the rising edge of the clock, input d is sampled and transferred to the output. At other times, the input d is ignored and the previously sampled value is retained.”
- Example waveforms:
Flip-Flop Timing Terminology (1/3)

- Camera Analogy: non-blurry digital photo
 - *Don’t move* while camera shutter is opening
 - *Don’t move* while camera shutter is closing
 - *Wait until* image appears on the display
Flip-Flop Timing Terminology (2/3)

• Camera Analogy: Taking a photo
 – *Setup time*: don’t move since about to take picture (open camera shutter)
 – *Hold time*: need to hold still after shutter opens until camera shutter closes
 – *Time to data*: time from open shutter until image appears on the output (viewfinder)
Flip-Flop Timing Terminology (3/3)

• Now applied to hardware:
 – *Setup Time*: how long the input must be stable *before* the clock trigger for proper input read
 – *Hold Time*: how long the input must be stable *after* the clock trigger for proper input read
 – “*Clock-to-Q*” *Delay*: how long it takes the output to change, measured from the clock trigger
Flip-Flop Timing Behavior

CLK

\[d \rightarrow FF \rightarrow q \]

\begin{align*}
\text{clk} & \quad \text{d} & \quad \text{q} \\
\end{align*}
Flip-Flop Timing Behavior

Setup Time
Flip-Flop Timing Behavior

![Diagram showing flip-flop timing behavior with hold time indicated.]
Flip-Flop Timing Behavior

Clock-to-Q
Accumulator Revisited
Proper Timing

• reset signal shown
• In practice X_i might not arrive to the adder at the same time as S_{i-1}
• S_i temporarily is wrong, but register always captures correct value
• In good circuits, instability never happens around rising edge of CLK

“Undefined” (unknown) signal
Review of Timing Terms

• **Clock**: steady square wave that synchronizes system

• **Flip-flop**: one bit of state that samples every rising edge of Clock (positive edge-triggered)

• **Register**: several bits of state that samples on rising edge of Clock (positive edge-triggered); also has RESET

• **Setup Time**: when input must be stable *before* Clock trigger

• **Hold Time**: when input must be stable *after* Clock trigger

• **Clock-to-Q Delay**: how long it takes output to change from Clock trigger
Agenda

• Muxes
• Sequential Logic Timing
• Maximum Clock Frequency
• Finite State Machines
• Functional Units
• Summary

Bonus Slides
• Logisim Intro
Model for Synchronous Systems

- Combinational logic blocks separated by registers
 - Clock signal connects only to sequential logic elements
 - Feedback is optional depending on application
- How do we ensure proper behavior?
 - How fast can we run our clock?
When can the input change?

• Needs to be stable for duration of setup time + hold time

• Often unstable until at least clock-to-q time has passed
 – Because register output isn’t ready yet

• Needs to account for all combinational logic delay too
The Critical Path

• The *critical path* is the longest delay between *any* two registers in a circuit.

• The clock period must be *longer* than this critical path, or the signal will not propagate properly to that next register.

\[
\text{Critical Path} = \text{CLK-to-Q Delay} + \text{CL Delay 1} + \text{CL Delay 2} + \text{CL Delay 3} + \text{Adder Delay} + \text{Setup Time}
\]
Maximum Clock Frequency

• What is the max frequency of this circuit?
 – Limited by how much time needed to get correct Next State to Register (t_{setup} constraint)

Max Delay = CLK-to-Q Delay + CL Delay + Setup Time

Assumes Max Delay > Hold Time

Min Period = Max Delay

Max Freq = 1/Min Period
How do we go faster?

Pipelining!

• Split operation into smaller parts and add a register between each one.
Pipelining and Clock Frequency (1/2)

- Clock period limited by propagation delay of adder and shifter
 - Add an extra register to reduce the critical path!
Pipelining and Clock Frequency (2/2)

- Reduced critical path → allows higher clock freq.
- Extra register → extra (shorter) cycle to produce first output
A Pipelining Analogy - Thanks to student Samm Du

Imagine putting out a fire with buckets
• One person could carry the bucket all the way from a pond to the fire

OR
• A line of people could hand buckets off all the way to the house

The time for the first bucket gets longer with the line of people. But future buckets come WAY faster
Pipelining Basics

• By adding more registers, break path into shorter “stages”
 – Aim is to reduce critical path
 – Signals take an additional clock cycle to propagate through each stage

• New critical path must be calculated
 – Affected by placement of new pipelining registers
 – Faster clock rate → higher throughput (outputs)
 – More stages → higher startup latency

• Pipelining tends to improve performance
 – More on this (and application to CPUs) later
Question: Want to run on 1 GHz processor.
$t_{\text{add}} = 100 \text{ ps}$. $t_{\text{mult}} = 200 \text{ ps}$. $t_{\text{setup}} = t_{\text{hold}} = 50 \text{ ps}$.

What is the maximum clock-to-q time?

(A) 550 ps
(B) 750 ps
(C) 500 ps
(D) 700 ps
Question: Want to run on 1 GHz processor.
\[t_{\text{add}} = 100 \text{ ps.} \quad t_{\text{mult}} = 200 \text{ ps.} \quad t_{\text{setup}} = t_{\text{hold}} = 50 \text{ ps.} \]

What is the maximum clock-to-q time?

Bottom path is critical path:
- Clock-to-q + 100 + 200 + 100 + 50 < 1000 ps = 1ns
- Clock-to-q + 450 < 1000 ps
- Clock-to-q < 550

(A) 550 ps
(B) 750 ps
(C) 500 ps
(D) 700 ps
Agenda

• Muxes
• Sequential Logic Timing
• Maximum Clock Frequency
• **Finite State Machines**
• Functional Units
• Summary

Bonus Slides
• Logisim Intro
Back to representations

• How do we represent sequential logic?
 – Truth tables could account for history
 – We could do boolean logic with prior state as a variable

• We can also use a new representation: Finite State Machines
Finite State Machines (FSMs)

• A convenient way to conceptualize computation over time
• Function can be represented with a *state transition diagram*
• With combinational logic and registers, any FSM can be implemented in hardware!
FSM Overview

• An FSM (in this class) is defined by:
 – A set of states \(S \) (circles)
 – An initial state \(s_0 \) (only arrow not between states)
 – A \textit{transition function} that maps from the current input and current state to the output and the next state (arrows between states)

• State transitions are controlled by the clock:
 – On each clock cycle the machine checks the inputs and generates a new state (could be same) and new output
Example: 3 Ones FSM

- FSM to detect 3 consecutive 1’s in the Input

States: S0, S1, S2
Initial State: S0
Transitions of form: input/output
Example: 3 Ones FSM

- FSM to detect 3 consecutive 1’s in the Input
Example: 3 Ones FSM

Starting state in red
Resulting state in Blue
Example: 3 Ones FSM

- FSM to detect 3 consecutive 1’s in the Input

Starting state in red
Resulting state in Blue
Example: 3 Ones FSM

- FSM to detect 3 consecutive 1’s in the Input

Starting state in red
Resulting state in Blue
Example: 3 Ones FSM

• FSM to detect 3 consecutive 1’s in the Input

Starting state in red
Resulting state in Blue
Example: 3 Ones FSM

- FSM to detect 3 consecutive 1’s in the Input

Starting state in red
Resulting state in Blue
Example: 3 Ones FSM

- FSM to detect 3 consecutive 1’s in the Input
Example: 3 Ones FSM

- FSM to detect 3 consecutive 1’s in the Input

Starting state in red
Resulting state in Blue
Example: 3 Ones FSM

- FSM to detect 3 consecutive 1’s in the Input

Starting state in red
Resulting state in Blue

And so on...
Hardware Implementation of FSM

• Register holds a representation of the FSM’s state
 – Must assign a unique bit pattern for each state
 – Output is present/current state (PS/CS)
 – Input is next state (NS)

• Combinational Logic implements transition function (state transitions + output)
FSM: Combinational Logic

- **Inputs:** Current State (CS) and Input (In)
- **Outputs:** Next State (NS) and Output (Out)

Truth Table

<table>
<thead>
<tr>
<th>CS</th>
<th>In</th>
<th>NS</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>00</td>
<td>1</td>
</tr>
</tbody>
</table>
Unspecified Output Values

• Our FSM has only 3 states
 – 2 entries in truth table are undefined/unspecified
• Use symbol ‘X’ to mean it can be either a 0 or 1
 – Make choice to simplify final expression
 – Any choice is correct

<table>
<thead>
<tr>
<th>CS</th>
<th>In</th>
<th>NS</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>1</td>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>00</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>XX</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>XX</td>
<td>X</td>
</tr>
</tbody>
</table>
3 Ones FSM in Hardware

- 2-bit **Register** needed for state
- **CL:** \(NS_1 = CS_0 \text{In}, \ NS_0 = \neg CS_1 \neg CS_0 \text{In}, \ Out = CS_1 \text{In} \)
Agenda

• Muxes
• Sequential Logic Timing
• Maximum Clock Frequency
• Finite State Machines
• **Functional Units**
• Summary

Bonus Slides
• Logisim Intro
Functional Units (a.k.a. Execution Unit)

• Now that we know sequential logic, we can explore some pieces of a processor!

• Functional Units are a part of the processor that perform operations and calculations based on the running program
 – Arithmetic Logic Unit
 – Floating Point Unit
 – Load/Store Unit
 – and several more...

Invented by John Von Neumann
He also invented
 ● Stored Program Concept
 ● Mergesort
 ● Mutually Assured Destruction
Arithmetic Logic Unit (ALU)

- Most processors contain a special logic block called the “Arithmetic Logic Unit” (ALU)
 - We’ll show you an easy one that does ADD, SUB, bitwise AND, and bitwise OR

- **Schematic:**

 - when $S=00$, $R = A + B$
 - when $S=01$, $R = A - B$
 - when $S=10$, $R = A \text{ AND } B$
 - when $S=11$, $R = A \text{ OR } B$
Notice that 3 values are ALWAYS calculated in parallel, but only 1 makes it to the Result.
Adder/Subtractor Design

1) Combinational Logic design we’ve seen before:
 – write out truth table
 – convert to boolean logic
 – minimize logic
 – then implement

How big might truth table and/or Boolean expression get?
Adder/Subtractor Design

2) Break down the problem into smaller pieces that we can cascade or hierarchically layer
 – Let’s try this approach instead
Adder/Subtractor: 1-bit LSB Adder

\[
\begin{array}{cccccc}
\text{a}_3 & \text{a}_2 & \text{a}_1 & \text{a}_0 & \text{b}_3 & \text{b}_2 & \text{b}_1 & \text{b}_0 \\
\downarrow & & & & \downarrow & & & \\
\text{s}_3 & \text{s}_2 & \text{s}_1 & \text{s}_0 & & & \\
\end{array}
\]

<table>
<thead>
<tr>
<th>a_0</th>
<th>b_0</th>
<th>s_0</th>
<th>c_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\[s_0 = a_0 \ XOR \ b_0 \]
\[c_1 = a_0 \ AND \ b_0 \]
Adder/Subtractor: 1-bit Adder

Here defining XOR of many inputs to be 1 when an odd number of inputs are 1

\[
s_i = \text{XOR}(a_i, b_i, c_i)
\]

\[
c_{i+1} = \text{MAJ}(a_i, b_i, c_i) = a_i b_i + a_i c_i + b_i c_i
\]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a_i</td>
<td>b_i</td>
<td>c_i</td>
<td>s_i</td>
<td>c_{i+1}</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Adder/Subtractor: 1-bit Adder

- Circuit Diagrams:

\[
\begin{align*}
 s_i & = \text{XOR}(a_i, b_i, c_i) \\
 c_{i+1} & = \text{MAJ}(a_i, b_i, c_i) = a_i b_i + a_i c_i + b_i c_i
\end{align*}
\]
N x 1-bit Adders \rightarrow N-bit Adder

- Connect CarryOut$^{i-1}$ to CarryIni to chain adders:
Two’s Complement Adder/Subtractor

- Subtraction accomplished by adding negated number:

\[x' = x \oplus 1 \]

(flips the bits)

x' = x \oplus 1

This signal is only high when you perform subtraction

Where did this come from?
Detecting Overflow

• Unsigned overflow
 – On addition, if carry-out from MSB is 1
 – On subtraction, if carry-out from MSB is 0
 • This case is a lot harder to see than you might think

• Signed overflow
 1) Overflow from adding “large” positive numbers
 2) Overflow from adding “large” negative numbers
Signed Overflow Examples (4-bit)

- Overflow from two positive numbers:
 - 0111 + 0111, 0111 + 0001, 0100 + 0100.
 - Carry-out from the 2\(^{nd}\) MSB (but not MSB)
 - pos + pos ≠ neg

- Overflow from two negative numbers:
 - 1000 + 1000, 1000 + 1111, 1011 + 1011.
 - Carry-out from the MSB (but not 2\(^{nd}\) MSB)
 - neg + neg ≠ pos

- Expression for signed overflow: $C_n \text{ XOR } C_{n-1}$
Simple ALU Schematic
Agenda

• Muxes
• Sequential Logic Timing
• Maximum Clock Frequency
• Finite State Machines
• Functional Units
• Summary

Bonus Slides
• Logisim Intro
Summary

• Hardware systems are constructed from *Stateless* Combinational Logic and *Stateful* Sequential Logic (includes registers)

• Circuits have a delay to them, and the critical path (longest delay between registers) determines the maximum clock frequency

• Finite State Machines can be used to represent sequential logic states
BONUS SLIDES

You are responsible for the material contained on the following slides, though we may not have enough time to get to them in lecture.

They have been prepared in a way that should be easily readable and the material will be touched upon in following lectures and labs.
Logisim

• Open-source (i.e. free!) “graphical tool for designing and simulating logic circuits”
 – Runs on Java on any computer
 – Download to your home computer via class login or the Logisim website (we are using version 2.14.6)

• No programming involved
 – Unlike Verilog, which is a hardware description language (HDL)
 – Click and drag; still has its share of annoying quirks

• http://ozark.hendrix.edu/~burch/logisim/
Gates in Logisim

- Click gate type, click to place
 - Can set options before placing or select gate *later* to change

Types of Gates

Options

- bus width \(n \)
- # inputs
- labeling not necessary, but can help
Registers in Logisim

• Flip-flops and Registers in “Memory” folder
• 8-bit accumulator:
Wires in Logisim

• Click and drag on existing port or wire
• Color schemes:
 – **Gray**: unconnected
 – **Dark Green**: low signal (0)
 – **Light Green**: high signal (1)
 – **Red**: error
 – **Blue**: undetermined signal
 – **Orange**: incompatible widths
• **Tunnels**: all tunnels with same label are connected

“Splitter” used to adjust bus widths
Subcircuits Example

• Logisim equivalent of procedure or method
 – Every project is a hierarchy of subcircuits

Incomplete wiring shown here
Common Mistakes in Logisim

• Connecting wires together
 – Crossing wires vs. connected wires

• Losing track of which input is which
 – Mis-wiring a block (e.g. CLK to Enable)
 – Grabbing wrong wires off of splitter

• Errors: