1.2

1.3

1

!

[
ot

—
[=2]

1.7

N
F

CS 61C C and Memory Management
Summer 2022 Discussion 1

1 Pre—check

This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and if false, correct the statement to make it true:

True or False: C is a pass-by-value language.

The following is correct C syntax:

int num = 43

In compiled languages, the compile time is generally pretty fast, however the run-

time is significantly slower than interpreted languages.
The correct way of declaring a character array is char[] array.
Bitwise and logical operations result in the same behaviour for given bitstrings.

Memory sectors are defined by the hardware, and cannot be altered.

When should you use the heap over the stack? Do they grow?

2 Memory Management

For each part, choose one or more of the following memory segments where the data

could be located: code, static, heap, stack.

(a
(b

Static variables
Local variables

)

)

(¢) Global variables

(d) Constants

(e) Machine Instructions

(f) Result of Dynamic Memory Allocation(malloc or calloc)
)

(g) String Literals

2 C and Memory Management

3 Bit-wise Operations
In C, we have a few bit-wise operators at our disposal:

e AND (&)
e NOT (~)

e OR(])

XOR (A)

SHIFT LEFT (<<)

— Example: 0b0001 << 2 = 0b0100
e SHIFT RIGHT (>>)

— Example: 0b0100 >> 2 = 0b000o1
a|/bla&b|a|b|aAb]|~a
010 0 0 0 1
01 0 1 1 1
110 0 1 1 0
1] 1 1 1 0 0

For your convenience, truth tables for the logical operators are provided above. With
the binary numbers a, b, and ¢ below, perform the following bit-wise operations:
0b1000 1011

a

b = @boo11 0101

c = @b1111 0000
(a) a&b

(b) anc
(c)ale

(d) a | (b > 5)
(¢) ~((b | c)&a)

	Pre-Check
	Memory Management
	Bit-wise Operations

