
CS 61C RISC-V
Summer 2022 Discussion 4

1 Precheck
1.1 After calling a function and having that function return, the t registers may have

been changed during the execution of the function, while a registers cannot.

False. a0 and a1 registers are often used to store the return value from a function,

so the function can set their values to the its return values before returning.

1.2 Let a0 point to the start of an array x. lw s0, 4(a0) will always load x[1] into s0.

False. This only holds for data types that are four bytes wide, like int or float.

For data-types like char that are only one byte wide, 4(a0) is too large of an offset

to return the element at index 1, and will instead return a char further down the

array (or some other data beyond the array, depending on the array length).

1.3 Assuming no compiler or operating system protections, it is possible to have the code

jump to data stored at 0(a0) (offset 0 from the value in register a0) and execute

instructions from there.

True. If your compiler/OS allows it (some do not, for security reasons), it is possible

for your code to jump to and execute instructions passed into the program via an

array. Conversely, it’s also possible for your code to treat itself as normal data

(search up self-modifying code if you want to see more details).

1.4 Assuming integers are 4 bytes, adding the ASCII character ’d’ to the address of

an integer array would get you the element at index 25 of that array (assuming the

array is large enough).

True. There is no fundamental difference between integers, strings, and memory

addresses in RISC-V (they’re all bags of bits), so it’s possible to manipulate data in

this way. (We don’t recommend it, though).

1.5 jalr is a shorthand expression for a jal that jumps to the specified label and does

not store a return address anywhere.

2 RISC-V

False. j label is a pseudo-instruction for jal x0, label. jalr is used to return

to the memory address specified in the second argument. Keep in mind that jal

jumps to a label (which is translated into an immediate by the assembler), whereas

jalr jumps to an address stored in a register, which is set at runtime.

1.6 Calling j label does the exact same thing as calling jal label.

False. As from the previous problem, j label is short for jal x0, label — since

it’s writing the return address to x0, it’s effectively discarding it since we have no

need to jump back to the original PC. jal label is short for jal ra, label.

RISC-V 3

2 Translation
RISC-V is an assembly language, which is comprised of simple instructions that

each do a single task such as addition or storing a chunk of data to memory.

For example, on the left is a line of C code and on the right is a chunk of RISC-V

code that accomplishes the same thing.

int x = 5;

y[2];

y[0] = x;

y[1] = x * x;

// x -> s0, &y -> s1

addi s0, x0, 5

sw s0, 0(s1)

mul t0, s0, s0

sw t0, 4(s1)

2.1 Translate between the C and RISC-V verbatim.

C RISC-V

// s0 -> a, s1 -> b

// s2 -> c, s3 -> z

int a = 4, b = 5, c = 6, z;

z = a + b + c + 10;

addi s0, x0, 4

addi s1, x0, 5

addi s2, x0, 6

add s3, s0, s1

add s3, s3, s2

addi s3, s3, 10

// s0 -> int * p = intArr;

// s1 -> a;

*p = 0;

int a = 2;

p[1] = p[a] = a;

sw x0, 0(s0)

addi s1, x0, 2

sw s1, 4(s0)

slli t0, s1, 2

add t0, t0, s0

sw s1, 0(t0)

// s0 -> a, s1 -> b

int a = 5, b = 10;

if(a + a == b) {

a = 0;

} else {

b = a - 1;

}

addi s0, x0, 5

addi s1, x0, 10

add t0, s0, s0

bne t0, s1, else

xor s0, x0, x0

jal x0, exit

else:

addi s1, s0, -1

exit:

4 RISC-V

// computes s1 = 2ˆ30

// assume int s1, s0; was declared above

s1 = 1;

for(s0 = 0; s0 != 30; s0++) {

s1 *= 2;

}

addi s0, x0, 0

addi s1, x0, 1

addi t0, x0, 30

loop:

beq s0, t0, exit

add s1, s1, s1

addi s0, s0, 1

jal x0, loop

exit:

// s0 -> n, s1 -> sum

// assume n > 0 to start

for(int sum = 0; n > 0; n--) {

sum += n;

}

addi s1, x0, 0

loop:

beq s0, x0, exit

add s1, s1, s0

add s0, s0, -1

jal x0, loop

exit:

3 Q3
In RISC-V, we have two methods of storing data: main memory and registers.

Registers are much faster than using main memory, but are very limited in space

(32 bits each). You should ALWAYS use the names of registers, e.g. s0 rather than

x8; the one exception to this rule is the zero register x0, as it is often shorter to

write x0 than its name zero, and the purpose of the register is still easy to tell with

either identifier. The below table of register names is reproduced from the RISC-V

green card.

Register(s) Alt. Description

x0 zero The zero register, always zero

x1 ra The return address register, stores where functions should return

x2 sp The stack pointer, where the stack ends

x5-x7, x28-x31 t0-t6 The temporary registers

x8-x9, x18-x27 s0-s11 The saved registers

x10-x17 a0-a7 The argument registers, a0-a1 are also return value

3.1 Can you convert each instruction’s registers to the other form?

add s0, zero, a1 -->

or x18, x1, x30 -->

add x8, x0, x11

or s2, ra, t5

As a reminder, you should ALWAYS use the named registers (e.g. s0 rather than

x8).

RISC-V 5

4 Q4
4.1 What is the range of 32-bit instructions that can be reached from the current PC

using a branch instruction?

The immediate field of the branch instruction is 12 bits. This field only references

addresses that are divisible by 2, so the immediate is multiplied by 2 before being

added to the PC. Since it is signed, the branch immediate can therefore move the PC

in the range of [−212, 212 − 2] bytes. If we’re in a version of RISC-V that has 2-byte

instructions, then this corresponds to a range of [−2−11, 211 − 1] instructions. The

instructions we use, however, are 4 bytes so they reside at addresses that are divisible

by 4 not 2. Therefore, we can only reference half as many 4-byte instructions as

2-byte instructions, and the range of 4-byte instructions is [−210, 210 − 1]

4.2 What is the maximum range of 32-bit instructions that can be reached from the

current PC using a jump instruction?

The immediate field of the jal instruction is 20 bits, while that of the jalr instruction

is only 12 bits, so jal can reach a wider range of instructions. Similar to above,

this 20-bit immediate is multiplied by 2 and added to the PC to get the final

address. Since the immediate is signed, we have a range of [−220, 220 − 2] bytes,

or [−219, 219 − 1] 2-byte instructions. As we actually want the number of 4-byte

instructions, we can reference those within [−218, 218 − 1] instructions of the current

PC.

4.3 Given the following RISC-V code (and instruction addresses), fill in the blank fields

for the following instructions (you’ll need your RISC-V green card!).

1 0x002cff00: loop: add t1, t2, t0 |________|________|________|________|________|__0x33__|

2 0x002cff04: jal ra, foo |__________________________|_________________|__0x6F__|

3 0x002cff08: bne t1, zero, loop |________|________|________|________|________|__0x63__|

4 ...

5 0x002cff2c: foo: jr ra ra =

1 0x002cff00: loop: add t1, t2, t0 | 0 | 5 | 7 | 0 | 6 | 0x33 | → 0x00538333

2 0x002cff04: jal ra, foo | 0 | 0x14 | 0 | 0 | 1 | 0x6F | → 0x028000ef

3 0x002cff08: bne t1, zero, loop | 1 | 0x3F | 0 | 6 | 1 | 0xC | 1 | 0x63 | → 0xfe031ce3

4 ...

5 0x002cff2c: foo: jr ra ra = 0x002cff08

4.1 What is the range of 32-bit instructions that can be reached from the current PC

using a branch instruction?

The immediate field of the branch instruction is 12 bits. This field only references

addresses that are divisible by 2, so the immediate is multiplied by 2 before being

added to the PC. Since it is signed, the branch immediate can therefore move the PC

in the range of [−212, 212 − 2] bytes. If we’re in a version of RISC-V that has 2-byte

instructions, then this corresponds to a range of [−2−11, 211 − 1] instructions. The

instructions we use, however, are 4 bytes so they reside at addresses that are divisible

by 4 not 2. Therefore, we can only reference half as many 4-byte instructions as

6 RISC-V

2-byte instructions, and the range of 4-byte instructions is [−210, 210 − 1]

4.2 What is the maximum range of 32-bit instructions that can be reached from the

current PC using a jump instruction?

The immediate field of the jal instruction is 20 bits, while that of the jalr instruction

is only 12 bits, so jal can reach a wider range of instructions. Similar to above,

this 20-bit immediate is multiplied by 2 and added to the PC to get the final

address. Since the immediate is signed, we have a range of [−220, 220 − 2] bytes,

or [−219, 219 − 1] 2-byte instructions. As we actually want the number of 4-byte

instructions, we can reference those within [−218, 218 − 1] instructions of the current

PC.

4.3 Given the following RISC-V code (and instruction addresses), fill in the blank fields

for the following instructions (you’ll need your RISC-V green card!).

1 0x002cff00: loop: add t1, t2, t0 |________|________|________|________|________|__0x33__|

2 0x002cff04: jal ra, foo |__________________________|_________________|__0x6F__|

3 0x002cff08: bne t1, zero, loop |________|________|________|________|________|__0x63__|

4 ...

5 0x002cff2c: foo: jr ra ra =

1 0x002cff00: loop: add t1, t2, t0 | 0 | 5 | 7 | 0 | 6 | 0x33 | → 0x00538333

2 0x002cff04: jal ra, foo | 0 | 0x14 | 0 | 0 | 1 | 0x6F | → 0x028000ef

3 0x002cff08: bne t1, zero, loop | 1 | 0x3F | 0 | 6 | 1 | 0xC | 1 | 0x63 | → 0xfe031ce3

4 ...

5 0x002cff2c: foo: jr ra ra = 0x002cff08

RISC-V 7

5 Q5
5.1 Write a function sumSquare in RISC-V that, when given an integer n, returns the

summation below. If n is not positive, then the function returns 0.

n2 + (n− 1)2 + (n− 2)2 + . . .+ 12

For this problem, you are given a RISC-V function called square that takes in a

single integer and returns its square.

First, let’s implement the meat of the function: the squaring and summing. We will

be abiding by the caller/callee convention, so in what register can we expect the

parameter n? What registers should hold square’s parameter and return value? In

what register should we place the return value of sumSquare?

add s0, a0, x0 # Set s0 equal to the parameter n

add s1, x0, x0 # Set s1 (accumulator) equal to 0

loop: beq s0, x0, end # Branch if s0 reaches 0

add a0, s0, x0 # Set a0 to the value in s0, setting up

args for call to function square

jal ra, square # Call the function square

add s1, s1, a0 # Add the returned value into s1

addi s0, s0, -1 # Decrement s0 by 1

jal x0, loop # Jump back to the loop label

end: add a0, s1, x0 # Set a0 to s1 (desired return value)

5.2 Since sumSquare is the callee, we need to ensure that it is not overriding any registers

that the caller may use. Given your implementation above, write a prologue and

epilogue to account for the registers you used.

prologue: addi sp, sp -12 # Make space for 3 words on the stack

sw ra, 0(sp) # Store the return address

sw s0, 4(sp) # Store register s0

sw s1, 8(sp) # Store register s1

epilogue: lw ra, 0(sp) # Restore ra

lw s0, 4(sp) # Restore s0

lw s1, 8(sp) # Restore s1

addi sp, sp, 12 # Free space on the stack for the 3 words

jr ra # Return to the caller

Note that ra is stored in the prologue and epilogue even though it is a caller -saved

register. This is because if we call multiple functions within the body of sumSquare,

we’d need to save ra to the stack on every call, which would be redundant — we

might as well save it in the prologue and restore it in the epilogue along with the

callee-saved registers. For this reason, in functions that don’t call other functions, it

is generally safe to refrain from saving/restoring ra in the prologue/epilogue as long

as nothing else is overwriting it.

	Precheck
	Translation
	Q3
	Q4
	Q5

