
CS 61C RISC-V
Summer 2022 Discussion 4

1 Precheck
1.1 After calling a function and having that function return, the t registers may have

been changed during the execution of the function, while a registers cannot.

1.2 Let a0 point to the start of an array x. lw s0, 4(a0) will always load x[1] into s0.

1.3 Assuming no compiler or operating system protections, it is possible to have the code

jump to data stored at 0(a0) (offset 0 from the value in register a0) and execute

instructions from there.

1.4 Assuming integers are 4 bytes, adding the ASCII character ’d’ to the address of

an integer array would get you the element at index 25 of that array (assuming the

array is large enough).

1.5 jalr is a shorthand expression for a jal that jumps to the specified label and does

not store a return address anywhere.

1.6 Calling j label does the exact same thing as calling jal label.

2 RISC-V

2 Translation
RISC-V is an assembly language, which is comprised of simple instructions that

each do a single task such as addition or storing a chunk of data to memory.

For example, on the left is a line of C code and on the right is a chunk of RISC-V

code that accomplishes the same thing.

int x = 5;

y[2];

y[0] = x;

y[1] = x * x;

// x -> s0, &y -> s1

addi s0, x0, 5

sw s0, 0(s1)

mul t0, s0, s0

sw t0, 4(s1)

2.1 Translate between the C and RISC-V verbatim.

C RISC-V

// s0 -> a, s1 -> b

// s2 -> c, s3 -> z

int a = 4, b = 5, c = 6, z;

z = a + b + c + 10;

// s0 -> int * p = intArr;

// s1 -> a;

*p = 0;

int a = 2;

p[1] = p[a] = a;

// s0 -> a, s1 -> b

int a = 5, b = 10;

if(a + a == b) {

a = 0;

} else {

b = a - 1;

}

RISC-V 3

addi s0, x0, 0

addi s1, x0, 1

addi t0, x0, 30

loop:

beq s0, t0, exit

add s1, s1, s1

addi s0, s0, 1

jal x0, loop

exit:

// s0 -> n, s1 -> sum

// assume n > 0 to start

for(int sum = 0; n > 0; n--) {

sum += n;

}

3 Q3
In RISC-V, we have two methods of storing data: main memory and registers.

Registers are much faster than using main memory, but are very limited in space

(32 bits each). You should ALWAYS use the names of registers, e.g. s0 rather than

x8; the one exception to this rule is the zero register x0, as it is often shorter to

write x0 than its name zero, and the purpose of the register is still easy to tell with

either identifier. The below table of register names is reproduced from the RISC-V

green card.

Register(s) Alt. Description

x0 zero The zero register, always zero

x1 ra The return address register, stores where functions should return

x2 sp The stack pointer, where the stack ends

x5-x7, x28-x31 t0-t6 The temporary registers

x8-x9, x18-x27 s0-s11 The saved registers

x10-x17 a0-a7 The argument registers, a0-a1 are also return value

3.1 Can you convert each instruction’s registers to the other form?

add s0, zero, a1 -->

or x18, x1, x30 -->

4 RISC-V

4 Q4
4.1 What is the range of 32-bit instructions that can be reached from the current PC

using a branch instruction?

4.2 What is the maximum range of 32-bit instructions that can be reached from the

current PC using a jump instruction?

4.3 Given the following RISC-V code (and instruction addresses), fill in the blank fields

for the following instructions (you’ll need your RISC-V green card!).

1 0x002cff00: loop: add t1, t2, t0 |________|________|________|________|________|__0x33__|

2 0x002cff04: jal ra, foo |__________________________|_________________|__0x6F__|

3 0x002cff08: bne t1, zero, loop |________|________|________|________|________|__0x63__|

4 ...

5 0x002cff2c: foo: jr ra ra =

4.1 What is the range of 32-bit instructions that can be reached from the current PC

using a branch instruction?

4.2 What is the maximum range of 32-bit instructions that can be reached from the

current PC using a jump instruction?

4.3 Given the following RISC-V code (and instruction addresses), fill in the blank fields

for the following instructions (you’ll need your RISC-V green card!).

1 0x002cff00: loop: add t1, t2, t0 |________|________|________|________|________|__0x33__|

2 0x002cff04: jal ra, foo |__________________________|_________________|__0x6F__|

3 0x002cff08: bne t1, zero, loop |________|________|________|________|________|__0x63__|

4 ...

5 0x002cff2c: foo: jr ra ra =

RISC-V 5

5 Q5
5.1 Write a function sumSquare in RISC-V that, when given an integer n, returns the

summation below. If n is not positive, then the function returns 0.

n2 + (n− 1)2 + (n− 2)2 + . . .+ 12

For this problem, you are given a RISC-V function called square that takes in a

single integer and returns its square.

First, let’s implement the meat of the function: the squaring and summing. We will

be abiding by the caller/callee convention, so in what register can we expect the

parameter n? What registers should hold square’s parameter and return value? In

what register should we place the return value of sumSquare?

5.2 Since sumSquare is the callee, we need to ensure that it is not overriding any registers

that the caller may use. Given your implementation above, write a prologue and

epilogue to account for the registers you used.

	Precheck
	Translation
	Q3
	Q4
	Q5

