
CS 61C CALL, RISC-V Procedures
Summer 2022 Discussion 5

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 The compiler may output pseudoinstructions.

True. It is the job of the assembler to replace these pseudoinstructions.

1.2 The main job of the assembler is to generate optimized machine code.

False. That’s the job of the compiler. The assembler is primarily responsible for

replacing pseudoinstructions and resolving offsets.

1.3 The object files produced by the assembler are only moved, not edited, by the linker.

False. The linker needs to relocate all absolute address references.

1.4 The destination of all jump instructions is completely determined after linking.

False. Jumps relative to registers (i.e. from jalr instructions) are only known at

run-time. Otherwise, you would not be able to call a function from different call

sites.

2 Translation
2.1 In this question, we will be translating between RISC-V code and binary/hexadecimal

values.

Translate the following Risc-V instructions into binary and hexadecimal notations

1 addi s1 x0 -24 = 0b______________________________ = 0x____________

2 sh s1 4(t1) = 0b______________________________ = 0x____________

For this question, use the reference sheet to get information about the instructions

and convert them to binary representation. One thing that helps is splitting the

parsing into parts. For question 1:

1 addi s1 x0 x4:

2 rd= s1 = 0b01001

2 CALL, RISC-V Procedures

3 rs1 = x0 = ob00000

4 immediate = -24 = 0b1111 1110 1000

5 opcode = 001 0011

6 funct3 = 000

7 Bringing it together - 0b1111 1110 1000 0000 0000 0100 1001 0011 = 0xFE800493

For question 2, with a similar method we get the answer: 0b0000 0000 1001 0011

0001 1010 0010 0011 = 0x00931A23

2.2 In this question, we will be translating between RISC-V code and binary/hexadecimal

values.

Translate the following hexadecimal values into the relevant RISC-V instruction.

You can assume that each hexadecimal value does represent an instruction.

1 0x234554B7 = _________________________________

2 0xFE050CE3 = _________________________________

For the reverse conversion, we want to first determine the instruction type. In order

to do that, we first look at the opcode (and then func3/func7 if necessary). Let’s

start with the first one:

1 0x234554B7 = 0b0010 0011 0100 0101 0101 0100 1011 0111, the opcode is always the last 7 bits so

opcode = 011 0111, which corresponds to the operation lui!

2 Looking at lui, we can see that the first 20 bits correspond to the immediate, and the next 5 ones

are the register ones. So:

3 0b0010 0011 0100 0101 0101 = 0x23455 So, the immediate input was indeed 0x23455.

4 Looking at the next 5 bits, they must be the rd register values. So, we have

5 rd = 0b01001

6 That is equal to 9, which is the register x9 = s1. Thus, overall we have

7 lui s1 0x23455

For question 2, with a similar approach: beq a0, x0, -8

CALL, RISC-V Procedures 3

3 CALL
The following is a diagram of the CALL stack detailing how C programs are built

and executed by machines.

3.1 Fill in the diagram such that the oval blanks hold the program/tool name (e.g.

interpreter) and rectangular boxes hold what goes into each program and the filetype

(e.g. high-level code: foo.py.

Intermediate files: foo.i, foo.ii

4 CALL, RISC-V Procedures

C program: foo.c

C Pre-Processor

Intermediate files: foo.i, foo.ii

Compiler

Assembly program: foo.a

Assembler

Object Code: foo.o

Linker lib.o

Executable a.out

(Machine Language)

Loader

Memory

3.2 For each step, describe briefly the program’s overall job and generally how it’s done.

Then describe why we’re not done at this stage.

C Pre-Processor: the C Pre-Processor helps integrate macros in C with the rest

of the code to help improve efficiency of code. It does this by locating parts of C

code marked with pre-processor directives (e.g. define, ifdef, include before

fully finishing compilation of code. Note that the C preprocessor in real life

executes after the first few steps of compilation (that we don’t cover and

is not in scope for 61C), but effectively for our purposes, we can consider

it to execute “first”. We’re not done at this stage because the code still resembles

source C code which is non-readable by the system.

Compilation: the compiler turns higher level code, like C, into optimised assembly

language. It’s generally done by the compiler taking into account our overarching

code and deciding what’s efficient, what’s not, and what can be “fixed”. We’re not

done at this stage because the resulting assembly file still contains pseudoinstructions

and has not resolved memory addresses, so it cannot be translated to binary.

Assembly: the assembler attempts to resolve non-relocated addresses, and produces

additional information from our file to use later on by other programs, such as the

symbol and relocation tables. It does this by making 1 or 2 passes over the file,

filling in the two tables, and using them to determine addresses that need resolving

and where labels are defined. We’re not done at this stage because the resulting

object file still contains unresolved addresses.

CALL, RISC-V Procedures 5

Linking: the linker stitches together the same segments from each of the object

files and libraries needed for the program and resolves absolute addressing at this

point. It does the first part by identifying the text and data components’ start and

end indices using the object file header and appending text-to-text and data-to-data

segments. The does the second part by using the symbol tables included in object

files to “request” file-relative address from other files for each file’s own unresolved

relocation entries. We’re not done at this stage because the program has not been

loaded into executable parts of memory and the system has not been set up to run

the program. This is also assuming we’re using statically linked libraries, which will

be fully present for each program at this point in the process. However, if we use

dynamically linked library, some addresses and setup will only be fully resolved at

the beginning of program loading.

Loading: the loader loads the executable into executable memory, and preps

the system for running the program by setting up system arguments, hardware

components (e.g. register states), the stack, and more. It does this by basically

working with (or being incorporated into) the operating system, so it understands

and knows what is happening in a finer grain detail than we as users do. At this

point, we’re done since the program is ready to be run!

3.3 How many passes through the code does the Assembler have to make? Why?

Two, one to find all the label addresses, and another to resolve forward references

while using these label addresses.

3.4 Describe the six main parts of the object files outputted by the Assembler (Header,

Text, Data, Relocation Table, Symbol Table, Debugging Information).

• Header: Sizes and positions of the other parts

• Text: The machine code

• Data: Binary representation of any data in the source file

• Relocation Table: Identifies lines of code that need to be “handled” by the

Linker (jumps to external labels (e.g. lib files), references to static data)

• Symbol Table: List of file labels and data that can be referenced across files

• Debugging Information: Additional information for debuggers

3.5 Which step in CALL resolves relative addressing? Absolute addressing?

Assembler, Linker

6 CALL, RISC-V Procedures

4 Assembling RISC-V
Let’s say that we have a C program that has a single function sum that computes

the sum of an array. We’ve compiled it to RISC-V, but we haven’t assembled the

RISC-V code yet.

1 .import print.s # print.s is a different file

2 .data

3 array: .word 1 2 3 4 5

4 .text

5 sum: la t0, array

6 li t1, 4

7 mv t2, x0

8 loop: blt t1, x0, end

9 slli t3, t1, 2

10 add t3, t0, t3

11 lw t3, 0(t3)

12 add t2, t2, t3

13 addi t1, t1, -1

14 j loop

15 end: mv a0, t2

16 jal ra, print_int # Defined in print.s

4.1 Which lines contain pseudoinstructions that need to be converted to regular RISC-V

instructions?

5, 6, 7, 14, 15.

la becomes the auipc and addi instructions.

li becomes an addi instruction here (e.g. li t0, 4 → addi t0, x0, 4).

mv becomes an addi instruction (i.e. mv rd, rs → addi rd, rs, 0).

j becomes a jal instruction (e.g. j loop → jal x0, loop).

4.2 For the branch/jump instructions, which labels will be resolved in the first pass of

the assembler? The second?

Note: This answer assumes that the assembler goes from top to bottom. The

answer changes if it goes in reverse.

loop (in j loop) will be resolved in the first pass since it’s a backward reference.

Since the assembler will have kept note of where end is in the first pass, it will resolve

end in blt t1, x0, end in the second pass. (print_int in jal ra, print_int will

be resolved by the Linker.)

Let’s assume that the code for this program starts at address 0x00061C00. The

code below is labelled with its address in memory (think: why is there a jump of 8

between the first and second lines?).

There’s a jump of 8 because la is a pseudoinstruction that gets translated to two

regular RISC-V instructions!

CALL, RISC-V Procedures 7

1 0x00061C00: sum: la t0, array

2 0x00061C08: li t1, 4

3 0x00061C0C: mv t2, x0

4 0x00061C10: loop: blt t1, x0, end

5 0x00061C14: slli t3, t1, 2

6 0x00061C18: add t3, t0, t3

7 0x00061C1C: lw t3, 0(t3)

8 0x00061C20: add t2, t2, t3

9 0x00061C24: addi t1, t1, -1

10 0x00061C28: j loop

11 0x00061C2C: end: mv a0, t2

12 0x00061C30: jal ra, print_int

4.3 What is in the symbol table after the assembler makes its passes?

Label Address

sum 0x00061C00
or

Label Address

sum 0x00061C00

loop 0x00061C10

end 0x00061C2C

Normally, one would assume that both the loop and end labels would be included in

the symbol table—and that’s perfectly valid answer given that an isolated assembler

would have no way to tell the difference between the three labels.

However, we stated at the beginning of this problem that this file is compiled from

C code. If we have a integrated compiler, assembler, and linker (e.g. gcc), then it

will know from the compilation phase which labels are for functions and which ones

aren’t. As such, it will only put the function labels in the symbol table since those

are the only ones that other files can reference.

4.4 What’s contained in the relocation table?

array and print_int.

Since array is defined in the static portion of memory, there’s no way the assembler

could know where it will be located (relative to the program counter) until the

program actually executes. We recall that the static portion of memory is above the

code portion of memory. Since we haven’t linked other files with this one yet (that’s

done in the linker phase!), we don’t know how much code we’ll have, so we don’t

know where the static portion of memory will begin! Also, other files may declare

items in static memory, and the assembler won’t know how these are specifically

ordered when the program is finally loaded.

Similarly, print_int is defined in a different file, so the assembler doesn’t know

where it will be in the final executable. That will be decided in the linking stage.

8 CALL, RISC-V Procedures

5 More Calling Convention
In a function called array, we want to call a function called reverse and multiply,

which takes in an array and reverses the array while multiplying each element by a

random number. array takes in 3 arguments: a0 - the address of the original array

a1 - the address of a new array with the same length as a0 a2 - the length of the

array at address a0 reverse and multiply takes in 3 arguments: a0 - the address of

the original array a1 - the address of a new array with the same length as a0 a2 -

the length of the array at address a0 a3 - the random number generate random

takes in 0 arguments and returns a random integer to a0

1 array:

2 # Prologue

3

4 addi t0 a0 0 # t0 is now the address of the original array

5 addi s0 a1 0 # s0 is now the address of a new array w/ same length as a0

6 addi a7 a2 0 # a7 now contains the length of the array

7

8 jal generate_random

9

10 addi t1 a0 0 # t1 now contains the random number

11

12 add a0 t0 x0 # a0 now contains the address of the original array

13 add a1 s0 x0 # a1 now contains the address of a new array with same length as a0

14 add a2 a7 x0 # a2 now contains the length of the array

15 addi a3 t1 0 # a3 now contains the random number

16

17 jal reverse

18

19 add t0 s0 x0

20 add t1 t1 t1

21 add a7 a6 a5

22 add s9 s8 s7

23 add s3 x0 t5

24 # Epilogue

25 ret

5.1 Which registers, if any, need to be saved on the stack in the prologue?

s0, s3, s7, s8, s9, ra

TODO Full explanation.

5.2 Assuming generate random uses all the t registers and all the a registers, what

registers, if any, do we need to save on the stack before calling generate random?

t0, a7

5.3 Now let’s assume generate random only uses s registers. Which registers do we

need to save on the stack before calling generate random? What registers does

CALL, RISC-V Procedures 9

generate random need to save on the stack in its prologue?

No registers need to be save on the stack before calling generate random. All the s

registers need to be saved on the stack for generate random’s prologue.

5.4 Assuming reverse uses the following registers: t0, t5, s0, s3, s7, s9, a5. Which

registers do we need to save on the stack before calling reverse?

a5, t5

5.5 Which registers need to be recovered in the epilogue before returning?

s0, s3, s7, s8, s9, ra

10 CALL, RISC-V Procedures

6 RISC-V Addressing
We have several addressing modes to access memory (immediate not listed):

1. Base displacement addressing adds an immediate to a register value to create

a memory address (used for lw, lb, sw, sb).

2. PC-relative addressing uses the PC and adds the immediate value of the

instruction (multiplied by 2) to create an address (used by branch and jump

instructions).

3. Register Addressing uses the value in a register as a memory address. For

instance, jalr, jr, and ret, where jr and ret are just pseudoinstructions that

get converted to jalr.

6.1 What is the range of 32-bit instructions that can be reached from the current PC

using a branch instruction?

The immediate field of the branch instruction is 12 bits. This field only references

addresses that are divisible by 2, so the immediate is multiplied by 2 before being

added to the PC. Since it is signed, the branch immediate can therefore move the PC

in the range of [−212, 212 − 2] bytes. If we’re in a version of RISC-V that has 2-byte

instructions, then this corresponds to a range of [−2−11, 211 − 1] instructions. The

instructions we use, however, are 4 bytes so they reside at addresses that are divisible

by 4 not 2. Therefore, we can only reference half as many 4-byte instructions as

2-byte instructions, and the range of 4-byte instructions is [−210, 210 − 1]

6.2 What is the maximum range of 32-bit instructions that can be reached from the

current PC using a jump instruction?

The immediate field of the jal instruction is 20 bits, while that of the jalr instruction

is only 12 bits, so jal can reach a wider range of instructions. Similar to above,

this 20-bit immediate is multiplied by 2 and added to the PC to get the final

address. Since the immediate is signed, we have a range of [−220, 220 − 2] bytes,

or [−219, 219 − 1] 2-byte instructions. As we actually want the number of 4-byte

instructions, we can reference those within [−218, 218 − 1] instructions of the current

PC.

6.3 Given the following RISC-V code (and instruction addresses), fill in the blank fields

for the following instructions (you’ll need your RISC-V green card!).

1 0x002cff00: loop: add t1, t2, t0 |________|________|________|________|________|__0x33__|

2 0x002cff04: jal ra, foo |__________________________|_________________|__0x6F__|

3 0x002cff08: bne t1, zero, loop |________|________|________|________|________|__0x63__|

4 ...

5 0x002cff2c: foo: jr ra ra =

1 0x002cff00: loop: add t1, t2, t0 | 0 | 5 | 7 | 0 | 6 | 0x33 | → 0x00538333

2 0x002cff04: jal ra, foo | 0 | 0x14 | 0 | 0 | 1 | 0x6F | → 0x028000ef

3 0x002cff08: bne t1, zero, loop | 1 | 0x3F | 0 | 6 | 1 | 0xC | 1 | 0x63 | → 0xfe031ce3

4 ...

5 0x002cff2c: foo: jr ra ra = 0x002cff08

	Pre-Check
	Translation
	CALL
	Assembling RISC-V
	More Calling Convention
	RISC-V Addressing

