
CS 61C CALL, RISC-V Procedures
Summer 2022 Discussion 5

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 The compiler may output pseudoinstructions.

1.2 The main job of the assembler is to generate optimized machine code.

1.3 The object files produced by the assembler are only moved, not edited, by the linker.

1.4 The destination of all jump instructions is completely determined after linking.

2 Translation
2.1 In this question, we will be translating between RISC-V code and binary/hexadecimal

values.

Translate the following Risc-V instructions into binary and hexadecimal notations

1 addi s1 x0 -24 = 0b______________________________ = 0x____________

2 sh s1 4(t1) = 0b______________________________ = 0x____________

2.2 In this question, we will be translating between RISC-V code and binary/hexadecimal

values.

Translate the following hexadecimal values into the relevant RISC-V instruction.

You can assume that each hexadecimal value does represent an instruction.

1 0x234554B7 = _________________________________

2 0xFE050CE3 = _________________________________

2 CALL, RISC-V Procedures

3 CALL
The following is a diagram of the CALL stack detailing how C programs are built

and executed by machines.

3.1 Fill in the diagram such that the oval blanks hold the program/tool name (e.g.

interpreter) and rectangular boxes hold what goes into each program and the filetype

(e.g. high-level code: foo.py.

Intermediate files: foo.i, foo.ii

3.2 For each step, describe briefly the program’s overall job and generally how it’s done.

Then describe why we’re not done at this stage.

3.3 How many passes through the code does the Assembler have to make? Why?

3.4 Describe the six main parts of the object files outputted by the Assembler (Header,

Text, Data, Relocation Table, Symbol Table, Debugging Information).

3.5 Which step in CALL resolves relative addressing? Absolute addressing?

CALL, RISC-V Procedures 3

4 Assembling RISC-V
Let’s say that we have a C program that has a single function sum that computes

the sum of an array. We’ve compiled it to RISC-V, but we haven’t assembled the

RISC-V code yet.

1 .import print.s # print.s is a different file

2 .data

3 array: .word 1 2 3 4 5

4 .text

5 sum: la t0, array

6 li t1, 4

7 mv t2, x0

8 loop: blt t1, x0, end

9 slli t3, t1, 2

10 add t3, t0, t3

11 lw t3, 0(t3)

12 add t2, t2, t3

13 addi t1, t1, -1

14 j loop

15 end: mv a0, t2

16 jal ra, print_int # Defined in print.s

4.1 Which lines contain pseudoinstructions that need to be converted to regular RISC-V

instructions?

4.2 For the branch/jump instructions, which labels will be resolved in the first pass of

the assembler? The second?

Let’s assume that the code for this program starts at address 0x00061C00. The

code below is labelled with its address in memory (think: why is there a jump of 8

between the first and second lines?).

1 0x00061C00: sum: la t0, array

2 0x00061C08: li t1, 4

3 0x00061C0C: mv t2, x0

4 0x00061C10: loop: blt t1, x0, end

5 0x00061C14: slli t3, t1, 2

6 0x00061C18: add t3, t0, t3

7 0x00061C1C: lw t3, 0(t3)

8 0x00061C20: add t2, t2, t3

9 0x00061C24: addi t1, t1, -1

10 0x00061C28: j loop

11 0x00061C2C: end: mv a0, t2

4 CALL, RISC-V Procedures

12 0x00061C30: jal ra, print_int

4.3 What is in the symbol table after the assembler makes its passes?

4.4 What’s contained in the relocation table?

CALL, RISC-V Procedures 5

5 More Calling Convention
In a function called array, we want to call a function called reverse and multiply,

which takes in an array and reverses the array while multiplying each element by a

random number. array takes in 3 arguments: a0 - the address of the original array

a1 - the address of a new array with the same length as a0 a2 - the length of the

array at address a0 reverse and multiply takes in 3 arguments: a0 - the address of

the original array a1 - the address of a new array with the same length as a0 a2 -

the length of the array at address a0 a3 - the random number generate random

takes in 0 arguments and returns a random integer to a0

1 array:

2 # Prologue

3

4 addi t0 a0 0 # t0 is now the address of the original array

5 addi s0 a1 0 # s0 is now the address of a new array w/ same length as a0

6 addi a7 a2 0 # a7 now contains the length of the array

7

8 jal generate_random

9

10 addi t1 a0 0 # t1 now contains the random number

11

12 add a0 t0 x0 # a0 now contains the address of the original array

13 add a1 s0 x0 # a1 now contains the address of a new array with same length as a0

14 add a2 a7 x0 # a2 now contains the length of the array

15 addi a3 t1 0 # a3 now contains the random number

16

17 jal reverse

18

19 add t0 s0 x0

20 add t1 t1 t1

21 add a7 a6 a5

22 add s9 s8 s7

23 add s3 x0 t5

24 # Epilogue

25 ret

5.1 Which registers, if any, need to be saved on the stack in the prologue?

5.2 Assuming generate random uses all the t registers and all the a registers, what

registers, if any, do we need to save on the stack before calling generate random?

5.3 Now let’s assume generate random only uses s registers. Which registers do we

6 CALL, RISC-V Procedures

need to save on the stack before calling generate random? What registers does

generate random need to save on the stack in its prologue?

5.4 Assuming reverse uses the following registers: t0, t5, s0, s3, s7, s9, a5. Which

registers do we need to save on the stack before calling reverse?

5.5 Which registers need to be recovered in the epilogue before returning?

CALL, RISC-V Procedures 7

6 RISC-V Addressing
We have several addressing modes to access memory (immediate not listed):

1. Base displacement addressing adds an immediate to a register value to create

a memory address (used for lw, lb, sw, sb).

2. PC-relative addressing uses the PC and adds the immediate value of the

instruction (multiplied by 2) to create an address (used by branch and jump

instructions).

3. Register Addressing uses the value in a register as a memory address. For

instance, jalr, jr, and ret, where jr and ret are just pseudoinstructions that

get converted to jalr.

6.1 What is the range of 32-bit instructions that can be reached from the current PC

using a branch instruction?

6.2 What is the maximum range of 32-bit instructions that can be reached from the

current PC using a jump instruction?

6.3 Given the following RISC-V code (and instruction addresses), fill in the blank fields

for the following instructions (you’ll need your RISC-V green card!).

1 0x002cff00: loop: add t1, t2, t0 |________|________|________|________|________|__0x33__|

2 0x002cff04: jal ra, foo |__________________________|_________________|__0x6F__|

3 0x002cff08: bne t1, zero, loop |________|________|________|________|________|__0x63__|

4 ...

5 0x002cff2c: foo: jr ra ra =

	Pre-Check
	Translation
	CALL
	Assembling RISC-V
	More Calling Convention
	RISC-V Addressing

