
CS 61C RISC-V Single Cycle Datapath
Summer 2022 Discussion 7

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 The single cycle datapath makes use of all hardware units for each instruction.

False. All units are active in each cycle, but their output may be ignored (gated) by

control signals.

1.2 It is possible to execute the stages of the single cycle datapath in parallel to speed

up execution of a single instruction.

False. Each stage depends on the value produced by the stage before it (e.g.,

instruction decode depends on the instruction fetched).

1.3 The auipc instruction and jump instructions (jal, jalr, and any pseudoinstruction)

are the only instructions that set PC = PC + offset.

False. Branch instructions also set PC = PC + offset if a branch condition is met.

1.4 Storing instructions and loading instructions are the only instructions that actively

require going to and from DMEM.

True. For all other instructions, we don’t need to read the data that is read out

from DEMEM, and thus don’t need to wait for the output of the MEM stage.

1.5 It is possible to use both the output of the immediate generator and the value in

register rs2.

False. You may only use either the immediate generator or the value in register rs2.

Notice in our datapath, there is a mux with a signal (BSel) that decides whether we

use the output of the immediate generator or the value in rs2.

1.6 Combinational logic is only used in the instruction decode stage.



2 RISC-V Single Cycle Datapath

False. Other stages executes combinational logic too (muxes for instruction fetch,

memory write, register updates; ALU operations during execute).

2 Single-Cycle CPU
2.1 For this worksheet, we will be working with the single-cycle CPU datapath on the

last page.

(a) Explain what happens in each datapath stage, and which hardware units in

the datapath are used.

IF Instruction Fetch

Send address to the instruction memory (IMEM), and read IMEM at that

address.

Hardware units: PC register, +4 adder, PCSel mux, IMEM

ID Instruction Decode

Generate control signals from the instruction bits, generate the immediate,

and read registers from the RegFile.

Hardware units: RegFile, ImmGen

EX Execute

Perform ALU operations, and do branch comparison.

Hardware units: ASel mux, BSel mux, branch comparator, ALU

MEM Memory

Read from or write to the data memory (DMEM).

Hardware units: DMEM

WB Writeback

Write back either PC + 4, the result of the ALU operation, or data from

memory to the RegFile.

Hardware units: WBSel mux, RegFile

(b) On the datapath, fill in each round box with the name of the datapath

component, and each square box with the name of the control signal.

(c) List all possible signals that each control signal may take on for the single cycle

datapath. Then mark which ones are actively used. If there are any non-used

signals, write a short explanation for why it exists but is not used.

Signal Name Values Signal Name Values

PCSel RegWEn

ImmSel BrEq

BrLt ALUSel

MemRW WBSel



RISC-V Single Cycle Datapath 3

PCSel: 0: OldPC + 4 is next PC; 1: ALU value (for branches, jumps, etc...)

RegWEn: 0: WB value cannot be written to regsiter; 1: allowed write

ImmSel: 0-5 used for I, B, S, J, U, and I* type immediates; 6-7 unused

BrEq: 0 when inputs not equal; 1 when inputs equal

BrLt: 0 when rs1 is not less than rs2; 1 when it is less than

ALUSel: note, this is using the same design reference 61C does; may differ

based on CPU design; you do not have to memorise all of these!

• 0: add (rd = rs1 + rs2)

• 1: sll (rd = rs1 << rs2)

• 2: slt (rd = (rs1 < rs1 (signed)) ? 1 : 1)

• 3: unused

• 4: xor (rd = rs1 rs2)5 : srl(rd = (unsigned) A >> B)

•• 6: or (rd = rs1 | rs2)

• 7: and (rd = rs1 rs2)

• 8: mul (rd = (signed) (rs1 * rs2)[31:0])

• 9: mulh (rd = (signed) (rs1 * rs2) [63:32])

• 10: unused

• 11: mulhu (rd = (rs1 * rs2) [63:32])

• 12: sub (rd = rs1 - rs2

• 13: sra (rd = (signed) rs1 >> rs2)

• 14: unused

• 15: bsel (rd = rs2)

MemRW: 0 for all non-write-to-memory operations; 1 to enable writing to

main memory

WBSel: 0 for PC + 4; 1 for ALU output; 2 for main memory read output; 3

unused

2.2 Fill out the following table with the control signals for each instruction based on

the datapath on the previous page. If the value of the signal does not affect the

execution of an instruction, i.e. the correct execution will still occur, you may use

the * (don’t care) symbol or write all the possible values (e.g. 0/1 for standard

datapath signals, or 0/1/2/3 for the WBSel).

Original phrasing: Wherever possible, use * to indicate that what this signal

is does not matter (as in, letting the value be whatever it wants won’t affect the

execution of the instruction). If the value of the signal does matter for correct

execution, but can vary, list all of the values (for example, for a signal that matters

with possible values of 0 and 1, write 0/1).



4 RISC-V Single Cycle Datapath

BrEq BrLT PCSel ImmSel BrUn ASel BSel ALUSel MemRW RegWEn WBSel

add * * 0 (PC + 4) * * 0 (Reg) 0 (Reg) add 0 1 1 (ALU)

ori * * 0 I * 0 (Reg) 1 (Imm) or 0 1 1 (ALU)

lw * * 0 I * 0 (Reg) 1 (Imm) add 0 1 2 (MEM)

sw * * 0 S * 0 (Reg) 1 (Imm) add 1 0 *

beq 1/0 * 1/0 SB * 1 (PC) 1 (Imm) add 0 0 *

jal * * 1 (ALU) UJ * 1 (PC) 1 (Imm) add 0 1 0 (PC + 4)

bltu * 1/0 1/0 SB 1 1 (PC) 1 (Imm) add 0 0 *



RISC-V Single Cycle Datapath 5

2.3 Clocking Methodology

• A state element is an element connected to the clock (denoted by a triangle

at the bottom). The input signal to each state element must stabilize before

each rising edge.

• The critical path is the longest delay path between state elements in the

circuit. The circuit cannot be clocked faster than this, since anything faster

would mean that the correct value is not guaranteed to reach the state element

in the alloted time. If we place registers in the critical path, we can shorten

the period by reducing the amount of logic between registers.

For this exercise, the delay for each circuit element is given as follows:

Clk-to-Q RegFile Read RegFile Setup Mux

5ns 35ns 20ns 15ns

ALU Branch Comp Imm Gen MEM Read MEM Write

100ns 50ns 45ns 300ns 200ns

(a) Mark the stages of the datapath that the following instructions use

IF ID EX MEM WB

add X X X X

ori X X X X

lw X X X X X

sw X X X X

beq X X X

jal X X X X

(b) Assume the RegFile setup and PC setup times are equivalent. Ignoring the

length of a clock cycle, how long does it take to execute the instruction:

1. jal

jal = clk-to-Q + Mem-Read + Imm-Gen + Mux + ALU + max(Mux(WBSel)

+ RegFileSetup, Mux(PCSel) + PCSetup)

= 5ns + 300ns + 45ns + 15ns + 100ns + 35ns = 500ns

2. lw

lw = clk-to-Q + Mem-Read + max(Mux + RegFileRead, Mux + Imm-Gen) +

ALU + Mem-Read + Mux + RegFileSetup

= 5ns + 300ns + 60ns + 100ns + 300ns + 15ns + 20ns = 800ns

3. sw

sw = clk-to-Q + Mem-Read + max(Mux + RegFileRead, Mux + Imm-Gen) +

ALU + Mem-Write

= 5ns + 300 ns + 60ns + 100ns + 200ns = 665ns



6 RISC-V Single Cycle Datapath

(c) Which instruction(s) exercise the critical path?

Load word (lw), which uses all 5 stages and takes 800ns.

(d) What is the fastest you could clock this single cycle datapath?

1

800
nanoseconds =

1

800 ∗ 10−9
seconds = 1, 250, 000s−1 = 0.00125GHz

(e) Why is the single cycle datapath inefficient?

At any given time, most of the parts of the single cycle datapath are sitting

unused. Also, even though not every instruction exercises the critical path, the

datapath can only be clocked as fast as the slowest instruction.

(f) How can you improve its performance? What is the purpose of pipelining?

Performance can be improved with pipelining, or putting registers between

stages so that the amount of combinational logic between registers is reduced,

allowing for a faster clock time.



RISC-V Single Cycle Datapath 7


	Pre-Check
	Single-Cycle CPU

