
CS 61C RISC-V Pipelining and Hazards
Summer 2022 Discussion 8

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 By pipelining the CPU datapath, each instruction will execute faster, resulting in a

speed-up in performance.

False. Because we implement registers between each stage of the datapath, the time

it takes for an instruction to finish executing will be longer than the single-cycle

datapath we were first introduced with. A single instruction will take multiple clock

cycles to get through all the stages, with the clock cycle based on the stage with the

longest timing.

1.2 A pipelined CPU datapath results in instructions being executed with higher latency

and higher throughput.

True. Recall that latency is the time for one instruction to finish, while throughput

is the number of instructions processed per unit time. Pipelining results in a higher

throughput because more instructions are run at once. At the same time, latency

is also higher as each individual instruction may take longer from start to finish

because each cycle must last as long as the longest cycle. Additionally, hazards may

be introduced.

1.3 Through adding additional hardware, we can implement two ’read’ ports as well

as a ’write’ port to the RegFile (where registers can be accessed). This solves the

hazard of two instructions reading and writing to the same register simultaneously.

False. The addition of independent ports to the RegFile allows for multiple instruc-

tions to access the RegFile at the same time (such as one instruction reading values

of two operands, while another instruction is writing to a return register). However,

this does not work if both instructions are reading and writing to the same register.

Some solutions to this data hazard could be to stall the latter instruction by 1 cycle

or to forward the read value from a previous instruction, bypassing the RegFile

completely.

1.4 As stalling reduces performance significantly, we generally prefer other solutions

to fixing pipelining hazards, even at the cost of complexity or hardware. These

2 RISC-V Pipelining and Hazards

include re-ordering instructions to avoid stalls or using previous instructions’ results

to ’forward’ them to the next instruction in order to predict a potential branch

or detect potential RegFile conflicts. In a modern-day CPU’s pipelined datapath,

are there still use-cases for stalling to combat potential hazards? If so, describe a

program that would.

Yes, say we have the RISC-V program where a0 is a pointer to an array of integers,

and we want to load a1 with the first element * 2:

lw t1 0(a0)

add t2 t1 t1

mv a1 t2

In this program, there are no other instructions to move into the load delay slot,

so we are forced to nop the next instruction and repeat it afterwards, essentially

stalling for one cycle. While we do have many tools and alternative solutions to

lessen possible performance loss, in some cases it is unavoidable.

2 Pipelining Registers
In order to pipeline, we separate the datapath into 5 discrete stages, each completing

a different function and accessing different resources on the way to executing an

entire instruction.

In the IF stage, we use the Program Counter to access our instruction as it is stored

in IMEM. Then, we separate the distinct parts we need from the instruction bits in

the ID stage and generate our immediate, the register values from the RegFile, and

other control signals. Afterwards, using these values and signals, we complete the

necessary ALU operations in the EX stage. Next, anything we do in regards with

DMEM (not to be confused with RegFile or IMEM) is done in the MEM stage,

before we hit the WB stage, where we write the computed value that we want back

into the return register in the RegFile.

These 5 stages, divided by registers as shown in the figure, allow the datapath

to provide a pipeline for multiple instructions to operate at the same time, each

accessing different resources. A small pipelined datapath is provided for you below.

Use it to answer the following questions.

RISC-V Pipelining and Hazards 3

2.1 What is the purpose of the new registers?

When we pipeline the datapath, the values from each stage need to be passed on at

each clock cycle. Each stage in the pipeline only operates on a small set of values,

but those values need to be correct with respect to the instruction that is currently

being processed. Say we use load word (lw) as an example: if it is in the EX stage,

then the EX stage should look like a snapshot of the single-cycle datapath. The

values on the rs1, rs2, immediate, and PC values should be as if lw was the only

instruction in the entire path. This also includes the control logic: the instruction is

passed in at each stage, the appropriate control signals are generated for the stage

of interest, and that stage can execute properly.

2.2 Looking at the way PC is passed through the datapath, there are two places where

+4 is added to the PC, once in the IF and MEM stage. Why do we add +4 to the

PC again in the memory stage?

We add +4 to the PC again in the memory stage so we don’t need to pass both

PC and PC+4 along the whole pipeline. This would use more registers, adding

unnecessary hardware. We also can’t just pass only PC+4 through the pipeline, as

we need the original PC value in operands like auipc.

3 Performance Analysis
Register clk-to-q 30 ps

Register setup 20 ps

Register hold 10 ps

Mux 25 ps

Branch comp. 75 ps

ALU 200 ps

Imm. Gen. 15 ps

Memory read 250 ps

Memory write 200 ps

RegFile read 150 ps

RegFile setup 20 ps

Given above are sample delays for each of the datapath components and register

timings. You may treat the datapath components as consistent combinatorial logic

circuits (NOTE: in real life, some of these components, such as the Muxes and ALU,

are just made up of logic gates, but memory and RegFile reads depend on other

4 RISC-V Pipelining and Hazards

factors that will be covered in class later!) In the questions below, use these in

conjunction with the defined datapath implementation to answer them.

3.1 What would be the fastest possible clock time for a single cycle datapath? You may

want to bring out your reference sheet.

(HINT: Recall that tclk-cycle ≥ tclk-to-q + tlongest-combinational-path + tsetup)

tclk ≥ tPC clk-to-q + tIMEM read + tRF read + tmux + tALU + tDMEM read + tmux + tRF setup

≥ 30 + 250 + 150 + 25 + 200 + 250 + 25 + 20

≥ 950 ps

1

950 ps
= 1.05 GHz

Note that the delay in the immediate generator as well as the branch comparator

are omitted because the immediate generator and branch comparison is done in

parallel with the RegFile read and ALU computation respectively, the latter two

taking much longer time.

3.2 What is the fastest possible clock time for a pipelined datapath?

IF : tPC clk-to-q + tIMEM read + tReg setup = 30 + 250 + 20 = 300 ps

ID : tReg clk-to-q + tRF read + tReg setup = 30 + 150 + 20 = 200 ps

EX : tReg clk-to-q + tImm Gen + tmux + tALU + tReg setup = 30 + 15 + 25 + 200 + 20 = 290 ps

MEM : tReg clk-to-q + tDMEM read + tReg setup = 30 + 250 + 20 = 300 ps

WB : tReg clk-to-q + tmux + tRF setup = 30 + 25 + 20 = 75 ps

max(IF, ID,EX,MEM,WB) = 300 ps

NOTE: Again, the branch comparator delay is overshadowed by the longer delay

by the ALU computation in the EX stage. Unlike in the single-cycle pipeline, the

Immediate Generator does not run parallel to the RegFile read in the ID stage, so

its computation must be taken in account for the longest path in the EX stage. The

calculations for this stage are shown below.

Branch comparator : tPC clk-to-q + tBranch comp. = 30 + 75 = 105 ps

ALU computation : tReg clk-to-q + tImm Gen + tmux + tALU + tReg setup = 290 ps

3.3 What is the speedup from the single cycle datapath to the pipelined datapath? Why

is the speedup less than 5?

RISC-V Pipelining and Hazards 5

950 ps
300 ps , or a 3.2 times speedup. The speedup is less than 5 because of (1) the necessity

of adding pipeline registers, which have clk-to-q and setup times, and (2) the need

to set the clock to the maximum of the five stages, which take different amounts of

time.

Note: because of hazards, which require additional logic to resolve, the actual

speedup would likely be even less than 3.2 times.

4 Hazards
One of the costs of pipelining is that it introduces pipeline hazards. Hazards,

generally, are defined as an issue with something in the CPU’s instruction pipeline

that either causes the next instruction not to execute at the prescribed (usually

next) clock cycle, or if it did execute, to execute incorrect.

The 5-stage pipelined CPU introduces three types: structural hazards, data hazards,

and control hazards.

Structural Hazards
Structural hazards occur when more than one instruction needs to use the same

datapath resource at the same time. Something to note is that in the standard

5-stage pipeline taught is that you will not have structural hazards, unless

there are active changes to the pipeline. That is, the structural hazards that used

to exist have since been fixed.

There are (were) two main causes of structural hazards:

• Register File: The register file is accessed both during ID, when it is read to

decode the instruction, and the corresponding register values; and during WB,

when it is written to in the rd register. The original RegFile had one port,

which doesn’t work when we have one instruction being decoded and another

writing back.

– We resolve this by having separate read and write ports. However, this

only works if the read/written registers are distinct.

– To account for reads and writes to the same register, processors usually

write to the register during the first half of the clock cycle, and read from

it during in the second half. This is an implementation of the idea of

double pumping, which is defined as when data is transferred along

data buses at double the rate, by utilising both the rising and falling

clock edges in a clock cycle.

• Main Memory: Main memory (DRAM) is accessed for both instructions and

data. Originally, main memory has one inward and one outward port. This

means instruction A going through IF and attempting to fetch an instruction

from memory cannot happen at the same time as instruction B attempting to

read (or write) to data portions of memory.

– Having a separate instruction memory (abbreviated IMEM) and data

memory (abbreviated DMEM) solves this hazard.

6 RISC-V Pipelining and Hazards

Something to remember about structural hazards is that they can always be resolved

by adding more hardware.

Data Hazards
Data hazards are caused by data dependencies between instructions. In CS 61C,

where we will always assume that instructions are always going through the processor

in order, we see data hazards when an instruction reads a register before a previous

instruction has finished writing to that register.

There are two types of data hazards:

• EX-ID: this hazard exists because the output from the execute stage is not

written back to the RegFile until the writeback stage, yet can be requested by

the subsequent instruction in the decode stage.

• MEM-ID: this hazard exists because the output from the memory access

stage is not written back to the RegFile until the writeback stage, but can be

requested from the decode stage, just as in EX-ID.

Control Hazards
We’ll discuss this in a subsequent section, as they require different treatment to

resolve.

4.1 Solutions to Data Hazards
For all questions, assume no branch prediction or double-pumping.

Forwarding

Most data hazards can be resolved by forwarding, which is when the result of the

EX or MEM stage is sent to the EX stage for a following instruction to use.

4.1 Look for data hazards in the code below, and figure out how forwarding could be

used to solve them.

Instruction C1 C2 C3 C4 C5 C6 C7

1. addi t0, a0, -1 IF ID EX MEM WB

2. and s2, t0, a0 IF ID EX MEM WB

3. sltiu a0, t0, 5 IF ID EX MEM WB

There are two data hazards, between instructions 1 and 2, and between instructions

1 and 3. The first could be resolved by forwarding the result of the EX stage in

C3 to the beginning of the EX stage in C4, and the second could be resolved by

forwarding the result of the EX stage in C3 to the beginning of the EX stage in C5.

4.2 Imagine you are a hardware designer working on a CPU’s forwarding control logic.

How many instructions after the addi instruction could be affected by data hazards

created by this addi instruction?

Three instructions. For example, with the addi instruction, any instruction that uses

t0 that has its ID stage in C3, C4, or C5 will not have the result of addi’s writeback

in C5. If, however, we are allowed to assume double-pumping (write-then-read to

RISC-V Pipelining and Hazards 7

registers), then it would only affect two instructions since the ID stage of instruction

4 would be allowed to line up with the WB stage of intruction 1. (Side note: how

is this implemented in hardware? We add 2 wires: one from the beginning of the

MEM stage for the output of the ALU and one from the beginning of the WB stage.

Both of these wires will connect to the A mux in the EX stage.)

Stalls

4.3 Look for data hazards in the code below. One of them cannot be solved with

forwarding—why? What can we do to solve this hazard?

Instruction C1 C2 C3 C4 C5 C6 C7 C8

1. addi s0, s0, 1 IF ID EX MEM WB

2. addi t0, t0, 4 IF ID EX MEM WB

3. lw t1, 0(t0) IF ID EX MEM WB

4. add t2, t1, x0 IF ID EX MEM WB

There are two data hazards in the code. The first hazard is between instructions

2 and 3, from t0, and the second is between instructions 3 and 4, from t1. The

hazard between instructions 2 and 3 can be resolved with forwarding, but the hazard

between instructions 3 and 4 cannot be resolved with forwarding. This is because

even with forwarding, instruction 4 needs the result of instruction 3 at the beginning

of C6, and it won’t be ready until the end of C6.

We can fix this by inserting a nop (no-operation) between instructions 3 and 4.

4.4 Say you are the compiler and can re-order instructions to minimize data hazards

while guaranteeing the same output. How can you fix the code above?

Reorder the instructions 2-3-1-4, because instruction 1 has no dependencies.

Detecting Data Hazards

Say we have the rs1, rs2, RegWEn, and rd signals for two instructions (instruction

n and instruction n+ 1) and we wish to determine if a data hazard exists across the

instructions. We can simply check to see if the rd for instruction n matches either

rs1 or rs2 of instruction n+1, indicating that such a hazard exists (think, why does

this make sense?).

We could then use our hazard detection to determine which forwarding paths/number

of stalls (if any) are necessary to take to ensure proper instruction execution. In

pseudo-code, this could look something like the following:

if (rs1(n + 1) == rd(n) || rs2(n + 1) == rd(n) && RegWen(n) == 1) {

forward ALU output of instruction n

}

8 RISC-V Pipelining and Hazards

Control Hazards
Control hazards are caused by jump and branch instructions, because for

all jumps and some branches, the next PC is not PC + 4, but the result of the

computation completed in the EX stage. We could stall the pipeline for control

hazards, but this decreases performance.

4.5 Besides stalling, what can we do to resolve control hazards?

We can predict which way branches will go, and when this prediction is incorrect,

“flush” the pipeline and continue with the correct instruction. (The most naive

prediction method is to simply predict that branches are always not taken).

Extra for Experience
4.6 Given the RISC-V code above and a pipelined CPU with no forwarding, how many

hazards would there be? What types are each hazard? Consider all possible hazards

from all pairs of instructions, and feel free to use any techniques in class (i.e. branch

prediction) to limit the number of stalls.

How many stalls would there need to be in order to fix the data hazard(s)? What

about the control hazard(s)?

Instruction C1 C2 C3 C4 C5 C6 C7 C8 C9

1. sub t1, s0, s1 IF ID EX MEM WB

2. or s0, t0, t1 IF ID EX MEM WB

3. sw s1, 100(s0) IF ID EX MEM WB

4. bgeu s0, s2, loop IF ID EX MEM WB

5. add t2, x0, x0 IF ID EX MEM WB

There are four hazards: between instructions 1 and 2 (data hazard from t1), instruc-

tions 2 and 3 (data hazard from s0), instructions 2 and 4 (from s0), and instructions

4 and 5 (a control hazard).

Assuming that we can read and write to the RegFile on the same cycle, two stalls are

needed between instructions 1 and 2, and two stalls are needed between instructions

2 and 3. No stalls are needed for the control hazard, because it can be handled with

branch prediction/flushing the pipeline.

RISC-V Pipelining and Hazards 9

	Pre-Check
	Pipelining Registers
	Performance Analysis
	Hazards
	Solutions to Data Hazards

