
CS 61C Cache Coherency
Summer 2022 Discussion 11

1 Precheck
1.1 Each hardware thread in the CPU uses a shared cache.

False, each thread has its own cache, which can lead to cache-incoherence.

1.2 The dirty bit signifies an address line in cache that has up-to-date memory, but

main memory at this address is out-of-date.

True, the dirty bit is set to 1 when the cache has been written to with new data,

commonly known for it’s use in write-back caches. This tells the computer that

main memory is out-of-date with respect to this specific address.

1.3 Given a multi-level cache setup that has n bytes worth of storage, we’re always able

to utilize all n bytes for distinct data.

False, this can only begin to be true in caches with an exclusive policy (between

inclusive and exclusive caches) as inclusive multi-level caches copy lower level data

that are hits into higher level caches. Exclusive multi-level caches move that data

instead.

1.4 Cache state information, like cache line tags, are stored independently from the data

cache.

False, usually, the valid, dirty, and shared bits are stored right with the data cache

line itself because it makes comparison logically easier! This is acceptable because

for the more complex cache coherency protocols, such as MOESI, typically we only

need up to 3 additional bits outside of data to determine state, whereas for tag bits,

there may be may more.

2 Writes
2.1 When it comes to writing data to cache memory, there are multiple write policies to

consider that offer different options when building our system. Some of them you

might encounter are:

1. Write-through: Write through: In this policy, when we have a write we write

to both the cache and the memory. This is the case for every write, so the

main memory always has the updated data. This is simple to implement, but

writing to main memory every single time is slow.

2. Write-back: On a write, the data is only updated/written in the cache. The

main memory only receives the data upon eviction. This means the cache has

more up to date data most of the time. While this is faster as there is less

accesses to main memory, it is harder to implement as we have to include more

overhead, such as dirty bits and so on.



2 Cache Coherency

3. Write-around: Data is only written to main memory, and whenever we do so

we invalidate the old data in the cache.

Another thing to consider is what we do when we have a write miss. For that, we

have 2 possible policies:

1. Write-allocate: On a write miss, we pull the block you missed on into the

cache

2. No write-allocate: On a write miss, you do not pull the block you missed

on into the cache. Only memory is updated. On a read miss, we still pull the

data into the cache.

Considering the above information, lets consider a direct mapped, no write-allocate

write-through cache with a capacity of 8B and a block size of 4B. Lets also assume

that the memory addresses are 8 bits each. Assuming the cache is completely empty

in the beginning, we make memory accesses to the following locations:

• 0x6A, Write

• 0x85, Read

• 0x6B, Read

• 0x87, Read

• 0x68, Write

With the above memory access pattern and the given cache configuration, how many

times do we access the main memory?

Short Answer: 4

Long Answer:

• The first cache access to the location 0x6A is a miss, as the cache is initially

empty. As the cache is no write allocate, on this cache miss we just write to

the main memory only, so this is our first main memory access, and the cache

is still empty.

• Then on the second cache access, we have a read miss - for this one we go to

main memory, and actually bring the line in the cache, which occupies the

cache line with index 1. 2nd main memory access.

• Third one is again a read miss, so the same happens and the line with the

index 0 gets filled out with the memory address this time. Third main memory

access.

• This one is actually a cache hit - tag is 0b1 0000 (which was put in the cache

in step 2) so no main memory access, read hit.

• This one is a write hit, but because our cache is write through we actually

write in the main memory as well, so 4th main memory access.

2.2 Lets say for the same cache size, memory accesses but the only difference is that we

have a no write-allocate write-back cache instead. How many memory accesses to



Cache Coherency 3

the main memory do we have in this case?

Short Answer: 3

Long Answer:

• The first cache access it the same as above, 1st main memory access.

• Again, same as above, 2nd main memory access.

• Same as above, 3rd main memory access.

• Same as above, read hit (no main memory access)

• This one is a write hit, but this time as we have a write back cache, we do not

go to main memory - we write the new data on the cache, and turn the dirty

bit on the relevant line to 1.

2.3 For one last optimization, we decide to use a write-allocate cache instead. So, now we

have a write-allocate, write-back cache. How many times do we access the memory

now?

Short Answer: 2

Long Answer:

• This is again a write miss, but because our cache is write-allocate now, we

actually bring the data in from the main memory into the cache, and the line

with index 0 gets filled. 1st main memory access.

• This one is the same as the above 2 examples, so cache line with index 1 gets

filled and we have a read miss. 2nd main memory access.

• Because the first write actually filled the 0th index line with the relevant data,

this 3rd memory access actually becomes a read hit, as there is data on the

cache now. No main memory access!

• Same as above, read hit (no main memory access).

• Same as 2.2, as the cache is write-back, this write hit is taken on the cache

itself, and the line on the cache gets changed - no main memory access.



4 Cache Coherency

3 State$

3.1 Parallel processing allows individual cores of a CPU to operate as independent units

with their own caches. However, for this to be the case, the machine must be able to

coordinate the information flow of all cores and all caches so that this information

is reliable to some degree. Therefore, we impose cache states, composing of the

valid, dirty and shared bits, to denote status of the cache data at a specific

cache block. These cache states are used when there is a cache miss or write

to a certain core’s cache so that if the information is modified in one place, the

other caches are informed. In summary, we don’t want two caches with different

data both saying that they have the most up-to-date data, because that simply

can’t be true. In other words, from the perspective of the host processor, their

cache line states may be update due to actions taken by proxy processor execution.

Consider this visual representation of the addressing of a cache block and the

updated construction of the block itself:

Address

Tag Index Offset
−→

Contents

State

Valid Dirty Shared Data

Each state describes a specific set of conditions, on a single cache block, in respect

to the overall memory system(all caches and main memory). These conditions are

listed below, your job is to pair all appropriate conditions with their corresponding

state.

Note: these conditions can apply to multiple states, therefore pick all that apply.

(a) data in host cache up-to-date

(b) data in main memory out-of-date

(c) data in main memory up-to-date

(d) dirty bit = 1 in host cache’s line

copy

(e) no copies exist in other (proxy)

caches

(f) copies may exist in other (proxy)

caches

(g) write will not change cache line state

in host processor

(h) access from processor will result in

a miss

1. Modified(M)

a, b, d, e, g

2. Owned(O)

a, b, d, f, g

3. Exclusive(E)

a, c, e

4. Shared(S)



Cache Coherency 5

a, f

5. Invalid(I)

h



6 Cache Coherency

4 Coherency
To be able to utilize multiple threads simultaneously, the hardware of your machine

must be able to keep multiple caches in check so that there is no conflicting data.

The diagram below represents the transitioning between states based on the reads

and writes to that particular block of data.

Note: A “probe” read or write indicates an action taken by a proxy

processor; i.e. the action is taken by a processor other than the one we’re

examining.

In the following problems you will assume that the system is implemented with a

write-back policy and you will be given a specific coherency protocol. Use the

provided tables to fill out the processor states for each cache write or cache read.

1. Memory Address 0xDEADBEEF in Processor 1 is read. Hit or miss?

2. Memory Address 0xDEADBEEF in Processor 1 is written to with integer 10.

3. Memory Address 0xDEADBEEF in Processor 3 is written to with integer 50.

4. Memory Address 0xDEADBEEF in Processor 4 is read. Hit or miss?



Cache Coherency 7

4.1 Fill in the following table with the corresponding processor states according to the

MSI protocol for each step below.

Processor 2 Processor 3 Processor 4Processor 1

Cache 1 Cache 2 Cache 3 Cache 4

Interconnection Network

Memory I/O

Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

First, all cold caches begin invalid.

1. A read is attempted on Processor 1, which results in a miss and loads the

data from main memory into the cache. Therefore, Processor 1 is now in a

shared state.

2. A write is attempted on Processor 1, which results in a write hit. Therefore,

Processor 1 has updated information and is now in a modified state. Note that

since we have a write-back policy here, main memory is now out-dated(dirty

bit=1).

3. A write is attempted on Processor 3, which results in a write miss. Processor

1 is then invalidated, and Processor 3 is written to with updated information.

Therefore, Processor 3 is now in a modified state.

4. A read is attempted on Processor 4, which results in a read miss. Processor 3 is

then directed to load dirty data to main memory(due to the write-back policy),

which then allows Processor 4 to load this data into it’s cache. Therefore,

Processor 4 and Processor 3 are now in a shared state.

Processor 2 Processor 3 Processor 4Processor 1

Cache 1 Cache 2 Cache 3 Cache 4

Interconnection Network

Memory I/O

Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

1

1

1

1

0

0

0S

M

I0 0

0 I0 0

0 I0 0

0 I0 0

0 I0 0 0 I0 0

0 I0 0 0 I0 0

0 I0 00 I0 0

0 I0 0

1 1 0 M

1 10 S 1 10 S



8 Cache Coherency

4.2 We now modify the MSI protocol by adding an Exclusive(E) state that represents

the state where a cache is the only cache that has seen this data. Fill in the following

table with the corresponding processor states according to the MESI protocol for

each step below.

Processor 2 Processor 3 Processor 4Processor 1

Cache 1 Cache 2 Cache 3 Cache 4

Interconnection Network

Memory I/O

Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

First, all cold caches begin invalid.

1. A read is attempted on Processor 1, which results in a miss and loads the

data from main memory into the cache. Therefore, Processor 1 is now in an

exclusive state because it’s the only cache that has seen this data(exclusive

is only possible for a read accessing a new address).

2. A write is attempted on Processor 1, which results in a write hit. Therefore,

Processor 1 has updated information and is now in a modified state.

3. A write is attempted on Processor 3, which results in a write miss. Processor

1 is then invalidated, and Processor 3 is written to with updated information.

Therefore, Processor 3 is now in a modified state.

4. A read is attempted on Processor 4, which results in a read miss. Processor 3 is

then directed to load dirty data to main memory(due to the write-back policy),

which then allows Processor 4 to load this data into it’s cache. Therefore,

Processor 4 and Processor 3 are now in a shared state.



Cache Coherency 9

Processor 2 Processor 3 Processor 4Processor 1

Cache 1 Cache 2 Cache 3 Cache 4

Interconnection Network

Memory I/O

Valid Dirty Shared State
1

2
3

4
Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

1 1 0

0

M

I0 0

0 I0 0

0 I0 0

0 I0 0

0 I0 0 0 I0 0

0 I0 0 0 I0 0

0 I0 00 I0 0

0 I0 0

1 1 0 M

1 10 S 1 10 S

1 00 E

4.3 We will now introduce a fifth state, the Owned(O) state, that represents the

instance where a cache has exclusive ownership of a cache line and other caches

can read from it. Fill in the following table with the corresponding processor states

according to the MOESI protocol for each step below.

Processor 2 Processor 3 Processor 4Processor 1

Cache 1 Cache 2 Cache 3 Cache 4

Interconnection Network

Memory I/O

Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

First, all cold caches begin invalid.

1. A read is attempted on Processor 1, which results in a miss and loads the

data from main memory into the cache. Therefore, Processor 1 is now in an

exclusive state because it’s the only cache that has seen this data(exclusive

is only possible for a read accessing a new address).

2. A write is attempted on Processor 1, which results in a write hit. Therefore,

Processor 1 has updated information and is now in a modified state.

3. A write is attempted on Processor 3, which results in a write miss. Processor

1 is then invalidated, and Processor 3 is written to with updated information.

Therefore, Processor 3 is now in a modified state.

4. A read is attempted on Processor 4, which results in a read miss. Since

Processor 3 has the line in a modified state, it flushes (sends) the updated

data onto the interconnection network, which then allows Processor 4 to load

this data into it’s cache. Processor 3’s copy is now in an owned state and

Processor 4’s copy is now in a shared state since the host processor’s copy is

modified but allows exclusive read-only access from proxy processors.



10 Cache Coherency

Processor 2 Processor 3 Processor 4Processor 1

Cache 1 Cache 2 Cache 3 Cache 4

Interconnection Network

Memory I/O

Valid Dirty Shared State
1

2
3

4
Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

Valid Dirty Shared State

1
2

3
4

1 1 0

0

M

I0 0

0 I0 0

0 I0 0

0 I0 0

0 I0 0 0 I0 0

0 I0 0 0 I0 0

0 I0 00 I0 0

0 I0 0

1 1 0 M

1 10 O 1 10 S

1 00 E


	Precheck
	Writes
	State$
	Coherency

