
CS 61C C
Summer 2023 Discussion 2

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 True or False: C is a pass-by-value language.

1.2 The following is correct C syntax:

int num = 43

1.3 In compiled languages, the compile time is generally pretty fast, however the run-

time is significantly slower than interpreted languages.

1.4 The correct way of declaring a character array is char[] array.

1.5 Bitwise and logical operations result in the same behaviour for given bitstrings.

1.6 What is a pointer? What does it have in common to an array variable?

1.7 If you try to dereference a variable that is not a pointer, what will happen? What

about when you free one?

1.8 Memory sectors are defined by the hardware, and cannot be altered.

1.9 For large recursive functions, you should store your data on the heap over the stack.

2 C
C is syntactically similar to Java, but there are a few key differences:

2 C

1. C is function-oriented, not object-oriented; there are no objects.

2. C does not automatically handle memory for you.

• Stack memory, or things that are not manually allocated : data is garbage

immediately after the function in which it was defined returns.

• Heap memory, or things allocated with malloc, calloc, or realloc: data

is freed only when the programmer explicitly frees it!

• There are two other sections of memory that we learn about in this course,

static and code, but we’ll get to those later.

• In any case, allocated memory always holds garbage until it is initialized!

3. C uses pointers explicitly. If p is a pointer, then *p tells us to use the value

that p points to, rather than the value of p, and &x gives the address of x

rather than the value of x.

On the left is the memory represented as a box-and-pointer diagram.

On the right, we see how the memory is really represented in the computer.

...

x=0x61C

0x2A
...
p

pp
...

0xFFFFFFFF

0x00000000

0xF93209B0

0xF93209AC

0xF9320904

0xF9320900

...

0x61C

0x2A
...

0xF93209AC

0xF9320904
...

0xFFFFFFFF

0x00000000

0xF93209B0

0xF93209AC

0xF9320904

0xF9320900

Let’s assume that int* p is located at 0xF9320904 and int x is located at

0xF93209B0. As we can observe:

• *p evaluates to 0x2A (4210).

• p evaluates to 0xF93209AC.

• x evaluates to 0x61C.

• &x evaluates to 0xF93209B0.

Let’s say we have an int **pp that is located at 0xF9320900.

2.1 What does pp evaluate to? How about *pp? What about **pp?

2.2 The following functions are syntactically-correct C, but written in an incomprehen-

sible style. Describe the behavior of each function in plain English.

(a) Recall that the ternary operator evaluates the condition before the ? and returns

the value before the colon (:) if true, or the value after it if false.

C 3

1 int foo(int *arr, size_t n) {

2 return n ? arr[0] + foo(arr + 1, n - 1) : 0;

3 }

(b) Recall that the negation operator, !, returns 0 if the value is non-zero, and 1 if

the value is 0. The ˜ operator performs a bitwise not (NOT) operation.

1 int bar(int *arr, size_t n) {

2 int sum = 0, i;

3 for (i = n; i > 0; i--)

4 sum += !arr[i - 1];

5 return ˜sum + 1;

6 }

(c) Recall that ˆ is the bitwise exclusive-or (XOR) operator.

1 void baz(int x, int y) {

2 x = x ˆ y;

3 y = x ˆ y;

4 x = x ˆ y;

5 }

(d) (Bonus: How do you write the bitwise exclusive-nor (XNOR) operator in C?)

3 Pointer Arithmetic
3.1 Consider the following blocks of C code:

1 void printall(int *x) {

2 // Suppose x points to 0xABDE2464

3 const int NUM_ELEMS = 3;

4 for(int i = 0; i < NUM_ELEMS; i += 1) {

5 printf("Address: %x \n", x);

6 x++;

7 }

8 }

(a) What three memory addresses are printed by this program?

1 void printall(char *x) {

2 // Suppose x points to 0xABDE2464

3 const int NUM_ELEMS = 3;

4 for(int i = 0; i < NUM_ELEMS; i += 1) {

5 printf("Address: %x \n", x);

6 x++;

7 }

8 }

(b) What three memory addresses are printed by this program?

4 C

4 Programming with Pointers
4.1 Implement the following functions so that they work as described.

(a) Swap the value of two ints. Remain swapped after returning from this function.

Hint: Our answer is around three lines long.

void swap(________________, ________________) {

(b) Return the number of bytes in a string. Do not use strlen.

Hint: Our answer is around 5 lines long.

int mystrlen(________________) {

4.2 The following functions may contain logic or syntax errors. Find and correct them.

(a) Returns the sum of all the elements in summands.

1 int sum(int *summands) {

2 int sum = 0;

3 for (int i = 0; i < sizeof(summands); i++)

4 sum += *(summands + i);

5 return sum;

6 }

(b) Increments all of the letters in the string which is stored at the front of an

array of arbitrary length, n >= strlen(string). Does not modify any other

parts of the array’s memory.

1 void increment(char *string, int n) {

2 for (int i = 0; i < n; i++)

3 *(string + i)++;

4 }

C 5

(c) Copies the string src to dst.

1 void copy(char *src, char *dst) {

2 while (*dst++ = *src++);

3 }

(d) Overwrites an input string src with “61C is awesome!” if there’s room. Does

nothing if there is not. Assume that length correctly represents the length of

src.

1 void cs61c(char *src, size_t length) {

2 char *srcptr, replaceptr;

3 char replacement[16] = "61C is awesome!";

4 srcptr = src;

5 replaceptr = replacement;

6 if (length >= 16) {

7 for (int i = 0; i < 16; i++)

8 *srcptr++ = *replaceptr++;

9 }

10 }

	Pre-Check
	C
	Pointer Arithmetic
	Programming with Pointers

