
CS 61C RISC-V, CALL
Summer 2023 Discussion 5

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 The compiler may output pseudoinstructions.

1.2 The main job of the assembler is to perform optimizations on the assembly code.

1.3 The object files produced by the assembler are only moved, not edited, by the linker.

1.4 The destination of all jump instructions is completely determined after linking.

2 Calling Convention Again
2.1 Write a function sumSquare in RISC-V that, when given an integer n, returns the

summation below. If n is not positive, then the function returns 0.

n2 + (n− 1)2 + (n− 2)2 + . . .+ 12

For this problem, you are given a RISC-V function called square that takes in a

single integer and returns its square.

First, let’s implement the meat of the function: the squaring and summing. We will

be abiding by the caller/callee convention, so in what register can we expect the

parameter n? What registers should hold square’s parameter and return value? In

what register should we place the return value of sumSquare?



2 RISC-V, CALL

2.2 Since sumSquare is the callee, we need to ensure that it is not overriding any registers

that the caller may use. Given your implementation above, write a prologue and

epilogue to account for the registers you used.

3 Translation
3.1 In this question, we will be translating between RISC-V code and binary/hexadecimal

values.

Translate the following Risc-V instructions into binary and hexadecimal notations

1 addi s1 x0 -24 = 0b______________________________ = 0x____________

2 sh s1 4(t1) = 0b______________________________ = 0x____________

3.2 In this question, we will be translating between RISC-V code and binary/hexadecimal

values.

Translate the following hexadecimal values into the relevant RISC-V instruction.

1 0x234554B7 = _________________________________

2 0xFE050CE3 = _________________________________



RISC-V, CALL 3

4 CALL
The following is a diagram of the CALL stack detailing how C programs are built

and executed by machines.

Source files: foo.c

C Preprocessor

Intermediate files: foo.i, foo.ii

Compiler

Assembly files: foo.s

Assembler

Object files: foo.o

Linker Libs

Execeutable files: foo.out

Loader (OS)

Memory

4.1 How many passes through the code does the Assembler have to make? Why?

4.2 Which step in CALL resolves relative addressing? Absolute addressing?

4.3 Describe the six main parts of the object files outputted by the Assembler (Header,

Text, Data, Relocation Table, Symbol Table, Debugging Information).



4 RISC-V, CALL

5 Assembling RISC-V
Let’s say that we have a C program that has a single function sum that computes

the sum of an array. We’ve compiled it to RISC-V, but we haven’t assembled the

RISC-V code yet.

1 .import print.s # print.s is a different file

2 .data

3 array: .word 1 2 3 4 5

4 .text

5 .globl sum

6 sum: la t0, array

7 li t1, 4

8 mv t2, x0

9 loop: blt t1, x0, end

10 slli t3, t1, 2

11 add t3, t0, t3

12 lw t3, 0(t3)

13 add t2, t2, t3

14 addi t1, t1, -1

15 j loop

16 end: mv a0, t2

17 jal ra, print_int # Defined in print.s

5.1 Which lines contain pseudoinstructions that need to be converted to regular RISC-V

instructions?

5.2 For the branch/jump instructions, which labels will be resolved in the first pass of

the assembler? The second? Assume that the code is processed from top to bottom.

Let’s assume that the code for this program starts at address 0x00061C00. The

code below is labelled with its address in memory (think: why is there a jump of 8

between the first and second lines?).

1 0x00061C00: sum: la t0, array

2 0x00061C08: li t1, 4

3 0x00061C0C: mv t2, x0

4 0x00061C10: loop: blt t1, x0, end

5 0x00061C14: slli t3, t1, 2

6 0x00061C18: add t3, t0, t3

7 0x00061C1C: lw t3, 0(t3)

8 0x00061C20: add t2, t2, t3

9 0x00061C24: addi t1, t1, -1

10 0x00061C28: j loop

11 0x00061C2C: end: mv a0, t2



RISC-V, CALL 5

12 0x00061C30: jal ra, print_int

5.3 What is in the symbol table after the assembler makes its passes?

5.4 What’s contained in the relocation table?


	Pre-Check
	Calling Convention Again
	Translation
	CALL
	Assembling RISC-V

