
CS 61C Single-Cycle Datapath
Summer 2023 Discussion 7

1 Precheck
1.1 The single cycle datapath makes use of all hardware units for each instruction.

False. All units are active in each cycle, but their output may be ignored (gated) by

control signals.

1.2 It is possible to execute the stages of the single cycle datapath in parallel to speed

up execution of a single instruction.

False. Each stage depends on the value produced by the stage before it (e.g.,

instruction decode depends on the instruction fetched).

1.3 If the delay of reading from IMEM is reduced, then any (non-empty) program using

the single cycle datapath will speed up.

True. Since every instruction must read from IMEM during the instruction fetch

stage, making the IMEM faster will speed up every single instruction.

1.4 The control signals used throughout all datapath stages to guide a correct ’execution

line’ all come from decoding an instruction’s unique binary encoding only.

False. PCSel is used to determine what instruction will be executed next, which is

not immediately known for a branch instruction. This is discovered in the Branch

Comparator after the register values are retrieved from the RegFile. The comparator

then produces the BrEq (branch equal) and BrLt (branch less than) flags, which are

used in the control logic with the instruction encoding to produce the PCSel signal.

1.5 Storing instructions and loading instructions are the only instructions that require

input/output from DMEM.

True. For all other instructions, we don’t need to read the data that is read out

from DMEM, and thus don’t need to wait for the output of the MEM stage.

1.6 It is possible to use both the output of the immediate generator and the value in

register rs2.

False. You may only use either the immediate generator or the value in register rs2.

Notice in our datapath, there is a mux with a signal (BSel) that decides whether we

use the output of the immediate generator or the value in rs2.



2 Single-Cycle Datapath

2 Single-Cycle Datapath
2.1 For this worksheet, we will be working with the single-cycle CPU datapath provided

the last page.

(a) Explain what happens in each datapath stage, and which hardware units in

the datapath are used.

IF Instruction Fetch

Send address to the instruction memory (IMEM), and read IMEM at that

address.

Hardware units: PC register, +4 adder, PCSel mux, IMEM

ID Instruction Decode

Generate control signals from the instruction bits, generate the immediate,

and read registers from the RegFile.

Hardware units: RegFile, ImmGen

EX Execute

Perform ALU operations, and do branch comparison.

Hardware units: ASel mux, BSel mux, branch comparator, ALU

MEM Memory

Read from or write to the data memory (DMEM).

Hardware units: DMEM

WB Writeback

Write back either PC + 4, the result of the ALU operation, or data from

memory to the RegFile.

Hardware units: WBSel mux, RegFile

(b) On the datapath, fill in each round box with the name of the datapath

component, and each square box with the name of the control signal.

See last page.



Single-Cycle Datapath 3

(c) List all possible values that each control signal may take on for the single cycle

datapath, then briefly describe what each value means for each signal.

Signal Name Values Signal Name Values

PCSel RegWEn

ImmSel BrEq

BrLt ALUSel

MemRW WBSel

PCSel: 0: OldPC + 4 is next PC; 1: ALU value (for branches, jumps, etc...)

RegWEn: 0: WB value is not written to register; 1: WB is written

ImmSel: 0-4 used for I, B, S, J, U type immediates; 5-7 unused

BrEq: 0 when inputs not equal; 1 when inputs equal

BrLt: 0 when rs1 is not less than rs2; 1 when it is less than

ALUSel: note, this is using the same design reference 61C does; may differ

based on CPU design; you do not have to memorise all of these!

• 0: add (rd = rs1 + rs2)

• 1: sll (rd = rs1 << rs2)

• 2: slt (rd = (rs1 < rs2 (signed)) ? 1 : 0)

• 3: unused

• 4: xor (rd = rs1 ˆ rs2)

• 5: srl (rd = (unsigned) A >> B)

• 6: or (rd = rs1 | rs2)

• 7: and (rd = rs1 & rs2)

• 8: mul (rd = (signed) (rs1 * rs2)[31:0])

• 9: mulh (rd = (signed) (rs1 * rs2) [63:32])

• 10: unused

• 11: mulhu (rd = (unsigned) (rs1 * rs2) [63:32])

• 12: sub (rd = rs1 - rs2)

• 13: sra (rd = (signed) rs1 >> rs2)

• 14: unused

• 15: bsel (rd = rs2)

MemRW: 0 for all non-write-to-memory operations; 1 to enable writing to

main memory

WBSel: 0 for DMEM read output; 1 for ALU output; 2 for PC + 4; 3 unused

2.2 Fill out the following table with the control signals for each instruction based on the

datapath on the last page. If the value of the signal does not affect the execution of

an instruction, use the * (don’t care) symbol to indicate this. If the value of the



4 Single-Cycle Datapath

signal does affect the execution, but can be different depending on the program, list

all possible values (for example, for a signal with possible values of 0 and 1, write

0/1).

BrEq BrLT PCSel ImmSel BrUn ASel BSel ALUSel MemRW RegWEn WBSel

add * * 0 (PC + 4) * * 0 (Reg) 0 (Reg) add 0 1 1 (ALU)

ori * * 0 I * 0 (Reg) 1 (Imm) or 0 1 1 (ALU)

lw * * 0 I * 0 (Reg) 1 (Imm) add 0 1 0 (MEM)

sw * * 0 S * 0 (Reg) 1 (Imm) add 1 0 *

beq 0/1 * 0/1 B * 1 (PC) 1 (Imm) add 0 0 *

jal * * 1 (ALU) J * 1 (PC) 1 (Imm) add 0 1 2 (PC + 4)

blt * 0/1 0/1 B 0 1 (PC) 1 (Imm) add 0 0 *



Single-Cycle Datapath 5

3 Timing the Datapath
3.1 Clocking Methodology

• A state element is an element connected to the clock (denoted by a triangle

at the bottom). The input signal to each state element must stabilize before

each rising edge.

• The critical path is the longest delay path between state elements in the

circuit. The circuit cannot be clocked faster than this, since anything faster

would mean that the correct value is not guaranteed to reach the state element

in the alloted time. If we place registers in the critical path, we can shorten

the period by reducing the amount of logic between registers.

For this exercise, the delay for each circuit element is given as follows:

Clk-to-Q RegFile Read RegFile Setup Mux

5ns 35ns 20ns 15ns

ALU Branch Comp Imm Gen MEM Read MEM Write

100ns 50ns 45ns 300ns 200ns

(a) Mark the stages of the datapath that the following instructions use:

IF ID EX MEM WB

add X X X X

ori X X X X

lw X X X X X

sw X X X X

beq X X X

jal X X X X

(b) How long does it take to execute each instruction? Ignore the length of a clock

cycle based off of the critical path, and assume that the setup times to the

RegFile and the PC are the same.

1. jal

jal = clk-to-Q + Mem-Read + Imm-Gen + Mux + ALU + max(Mux(WBSel)

+ RegFileSetup, Mux(PCSel) + PCSetup)

= 5ns + 300ns + 45ns + 15ns + 100ns + 35ns = 500ns

2. lw

lw = clk-to-Q + Mem-Read + max(Mux + RegFileRead, Mux + Imm-Gen) +

ALU + Mem-Read + Mux + RegFileSetup

= 5ns + 300ns + 60ns + 100ns + 300ns + 15ns + 20ns = 800ns

3. sw



6 Single-Cycle Datapath

sw = clk-to-Q + Mem-Read + max(Mux + RegFileRead, Mux + Imm-Gen) +

ALU + Mem-Write

= 5ns + 300 ns + 60ns + 100ns + 200ns = 665ns

(c) Which instruction(s) exercise the critical path?

Load word (lw), which uses all 5 stages and takes 800ns.

(d) What is the fastest you could clock this single cycle datapath?

1

800
nanoseconds =

1

800 ∗ 10−9
seconds = 1, 250, 000s−1 = 1.25MHz

(e) Why is the single cycle datapath inefficient?

At any given time, most of the parts of the single cycle datapath are sitting

unused. Also, even though not every instruction exercises the critical path, the

datapath can only be clocked as fast as the slowest instruction.

(f) How can you improve its performance? What is the purpose of pipelining?

Performance can be improved with pipelining, or putting registers between

stages so that the amount of combinational logic between registers is reduced,

allowing for a faster clock time.



Single-Cycle Datapath 7


