
CS 61C Data- and Thread-Level
Parallelism

Summer 2023 Discussion 9

1 Precheck
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 SIMD is ideal for flow-control heavy tasks (i.e. tasks with many branches/if state-

ments).

False. Data-level parallelism really shines through when we need to repeatedly

perform the same operation on a large amount of data. Flow control statements

disrupt the continuous flow of computation, which makes programs with them hard

to take advantage of SIMD.

1.2 Intel’s SIMD intrinsic instructions invoke large registers available on the architecture

in order to perform one operation on multiple values at once.

True. For example, we can pack four 32-bit integers in a single 128-bit register

and perform the same arithmetic operation on all four integers in one go, using an

instruction such as __m128i _mm_add_epi32(__m128i a, __m128i b).

1.3 The pipelined datapath is an example of parallelism because it performs different

stages of instructions in parallel.

True. While a pipelined datapath doesn’t execute multiple instructions at the same

time, it makes use of each part of the processor at the same time with different

instructions, implementing instruction-level parallelism. This can be contrasted with

data-level parallelism, which takes advantage of larger registers to do simultaneous

memory accesses, and thread-level parallelism, which forks into multiple parallel

threads and joins the tasks together.

1.4 The most effective way of increasing performance on a modern PC is to increase its

clock speed.

False. Modern clock speeds have almost reached their physical limits, and so there’s

not much room to improve our performance with faster clock speeds. To improve

performance, the current best way is to parallelize onto multiple cores (thread-level

parallelism).

1.5 In thread-level parallelism, the amount of speedup is directly proportional to the

increase in number of cores.

False, usually there is some overhead in parallelizing an operation. Additionally,

Amdahl’s Law shows that true speedup is affected not only by the number of threads

but also by the amount of code that cannot be sped up.

2 Data- and Thread-Level Parallelism

1.6 In thread-level parallelism, threads may run in any order and can start while other

threads are partway through their execution.

True. We must ensure that whichever order the threads execute in, the behavior of

the program is correct, which includes handling any potential data races.

2 SIMD
The idea central to data level parallelism is vectorized calculation: applying opera-

tions to multiple items (which are part of a single vector) at the same time.

Some machines with x86 architectures have special, wider registers, that can hold

128, 256, or even 512 bits. Intel intrinsics (Intel proprietary technology) allow us to

use these wider registers to harness the power of DLP in C code.

Below is a small selection of the available Intel intrinsic instructions. All of them

perform operations using 128-bit registers. The type m128i is used when these

registers hold 4 ints, 8 shorts or 16 chars; m128d is used for 2 double precision

floats, and m128 is used for 4 single precision floats. Where you see “epiXX”, epi

stands for extended packed integer, and XX is the number of bits in the integer.

“epi32” for example indicates that we are treating the 128-bit register as a pack of 4

32-bit integers.

• __m128i _mm_set1_epi32(int i):

Set the four signed 32-bit integers within the vector to i.

• __m128i _mm_loadu_si128(__m128i *p):

Load the 4 successive ints pointed to by p into a 128-bit vector.

• __m128i _mm_mullo_epi32(__m128i a, __m128i b):

Return vector (a0 · b0, a1 · b1, a2 · b2, a3 · b3).

• __m128i _mm_add_epi32(__m128i a, __m128i b):

Return vector (a0 + b0, a1 + b1, a2 + b2, a3 + b3)

• void _mm_storeu_si128(__m128i *p, __m128i a):

Store 128-bit vector a at pointer p.

• __m128i _mm_and_si128(__m128i a, __m128i b):

Perform a bitwise AND of 128 bits in a and b, and return the result.

• __m128i _mm_cmpeq_epi32(__m128i a, __m128i b):

The ith element of the return vector will be set to 0xFFFFFFFF if the ith

elements of a and b are equal, otherwise it’ll be set to 0.

2.1 You have an array of 32-bit integers and a 128-bit vector as follows:

1 int arr[8] = {1, 2, 3, 4, 5, 6, 7, 8};

2 __m128i vector = _mm_loadu_si128((__m128i *) arr);

Data- and Thread-Level Parallelism 3

For each of the following tasks, fill in the correct arguments for each SIMD instruction,

and where necessary, fill in the appropriate SIMD function. Assume they happen

independently, i.e. the results of Part (a) do not at all affect Part (b).

(a) Multiply vector by itself, and set vector to the result.

1 vector = _mm_mullo_epi32(vector, vector);

(b) Add 1 to each of the first 4 elements of the arr, resulting in arr = {2, 3, 4,

5, 5, 6, 7, 8}

1 __m128i vector_ones = _mm_set1_epi32(1);

2 __m128i result = _mm_add_epi32(vector, vector_ones);

3 _mm_storeu_si128((__m128i *) arr, result);

(c) Add the second half of the array to the first half of the array, resulting

in arr = {1 + 5, 2 + 6, 3 + 7, 4 + 8, 5, 6, 7, 8} = {6, 8, 10, 12, 5,

6, 7, 8}

1 __m128i result = _mm_add_epi32(_mm_loadu_si128((__m128i *) (arr + 4)), vector);

2 _mm_storeu_si128((__m128i*) arr, result);

(d) Set every element of the array that is not equal to 5 to 0, resulting in arr

= {0, 0, 0, 0, 5, 0, 0, 0}. Remember that the first half of the array has

already been loaded into vector.

1 __m128i fives = _mm_set1_epi32(5);

2 __m128i mask = _mm_cmpeq_epi32(vector, fives);

3 __m128i result = _mm_and_si128(mask, vector);

4 __mm_storeu_si128((__m128i *) arr, result);

5 vector = _mm_loadu_si128((__m128i *) (arr + 4));

6 mask = _mm_cmpeq_epi32(vector, fives);

7 result = _mm_and_si128(mask, vector);

8 _mm_storeu_si128((__m128i *) (arr + 4), result);

3 TLP
As powerful as data level parallelization is, it can be quite inflexible, as not all

applications have data that can be vectorized. Multithreading, or running a single

piece of software on multiple hardware threads, is much more powerful and versatile.

OpenMP provides an easy interface for using multithreading within C programs.

Some examples of OpenMP directives:

• The parallel directive indicates that each thread should run a copy of the

code within the block. If a for loop is put within the block, every thread will

run every iteration of the for loop.

#pragma omp parallel

{

4 Data- and Thread-Level Parallelism

...

}

NOTE: The opening curly brace needs to be on a newline or else there will be

a compile-time error!

• The parallel for directive will split up iterations of a for loop over various

threads. Every thread will run different iterations of the for loop. The

exact order of execution across all threads, as well as the number of iterations

each thread performs, are both non-deterministic, as the OpenMP library

load balances threads for performance. The following two code snippets are

equivalent.

#pragma omp parallel for

for (int i = 0; i < n; i++) {

...

}

#pragma omp parallel

{

#pragma omp for

for (int i =0; i < n; i++) { ... }

}

There are two functions you can call that may be useful to you:

• int omp_get_thread_num() will return the number of the thread executing

the code

• int omp_get_num_threads() will return the number of total hardware threads

executing the code

3.1 For each question below, state and justify whether the program is sometimes

incorrect, always incorrect, slower than serial, faster than serial, or none

of the above. Assume the number of threads can be any integer greater than 1.

Assume no thread will complete in its entirety before another thread starts executing.

Assume arr is an int[] of length n.

(a) // Set element i of arr to i

#pragma omp parallel

{

for (int i = 0; i < n; i++)

arr[i] = i;

}

Slower than serial: There is no for directive, so every thread executes this loop

in its entirety. n threads running n loops at the same time will actually execute

in the same time as 1 thread running 1 loop. The values should all be correct at

the end of the loop since each thread is writing the same values. Furthermore,

the existence of parallel overhead due to the extra number of threads will slow

down the execution time.

(b) // Set arr to be an array of Fibonacci numbers.

arr[0] = 0;

arr[1] = 1;

#pragma omp parallel for

for (int i = 2; i < n; i++)

Data- and Thread-Level Parallelism 5

arr[i] = arr[i-1] + arr[i - 2];

Sometimes incorrect: While the loop has dependencies from previous data, in a

interweaved scheme where the threads take turns completing each iteration in

sequential order (e.g.

1 for (int i = omp_get_thread_num(); i < n; i += omp_get_num_threads())

is the work allocation per thread and the order of execution is based on the

shared variable i from 2 to n), each thread will have the correctly updated

shared arr to compute the next Fibonacci number. Note that this scheme

would still be slower than serial due to the amount of overhead required as the

threads need to wait for each other’s execution to finish as well as deal with

coherency issues regarding the shared data.

(c) // Set all elements in arr to 0;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

arr[i] = 0;

Faster than serial: The for directive automatically makes loop variables (such

as the index) private, so this will work properly. The for directive splits up the

iterations of the loop to optimize for efficiency, and there will be no data races.

(d) // Set element i of arr to i;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

*arr = i;

arr++;

Sometimes incorrect: Because we are not indexing into the array, there is a

data race to increment the array pointer. If multiple threads are executed such

that they all execute the first line, *arr = i; before the second line, arr++;,

they will clobber each other’s outputs by overwriting what the other threads

wrote in the same position. However, taking a similar interweaved scheme as

in 4.1b, there is an order that will not encounter data races, though it will be

slower than serial.

6 Data- and Thread-Level Parallelism

3.2 Consider the following multithreaded code to compute the product over all elements

of an array.

1 // Assume arr has length 8*n.

2 double fast_product(double *arr, int n) {

3 double product = 1;

4 #pragma omp parallel for

5 for (int i = 0; i < n; i++) {

6 double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr[i*8+3]

7 * arr[i*8+4]*arr[i*8+5]*arr[i*8+6]*arr[i*8+7]

8 product *= subproduct;

9 }

10 return product;

11 }

(a) What is wrong with this code?

The code has the shared variable product, which can cause data races when

multiple threads access it simultaneously.

(b) Fix the code using #pragma omp critical. What line would you place the

directive on to create that critical section?

1 double fast_product(double *arr, int n) {

2 double product = 1;

3 #pragma omp parallel for

4 for (int i = 0; i < n; i++) {

5 double subproduct = arr[i*8]*arr[i*8+1]*arr[i*8+2]*arr[i*8+3]

6 * arr[i*8+4]*arr[i*8+5]*arr[i*8+6]*arr[i*8+7]

7 #pragma omp critical

8 product *= subproduct;

9 }

10 return product;

11 }

