
CS 61CL (Clancy) Solutions and grading standards for exam 1
Spring 2009

 A

169 students took the exam. The average score was 43.6; the median was 46. Scores
ranged from 1 to 59. There were 89 scores between 45 and 60, 62 between 30 and 44, 15
between 15 and 29, and 3 between 1 and 14. (Were you to receive grades of 46 out of 60
on each in-class exams and 46 out of 60 on the final exam, plus good grades on home-
work and lab, you would receive an A–; similarly, a test grade of 31 may be projected to
a B–.)

There were four versions of the test. (The version indicator appears at the bottom of the
first page.)

If you think we made a mistake in grading your exam, describe the mistake in writing and
hand the description with the exam to your lab t.a. or to Mike Clancy. We will regrade
the entire exam.

Problem 0 (2 points)
You lost 1 point on this problem if you did any one of the following: you earned some
credit on a problem and did not put your login name on the page, you did not adequately
identify your lab section, or you failed to put the names of your neighbors on the exam.
The reason for this apparent harshness is that exams can get misplaced or come unsta-
pled, and we want to make sure that every page is identifiable. We also need to know
where you will expect to get your exam returned. Finally, we occasionally need to verify
where students were sitting in the classroom while the exam was being administered.

Problem 1 (6 points)

You were to give the sizeof values for the given arguments. The info field in versions A
and C was an 8-element array; in versions B and D, it was a 16-element array. Here are
the answers:

expression value explanation

struct node (versions A and C) 8 + 4 = 12 both the array and the pointer take
up space in the struct; a character
takes up 1 byte

struct node (versions B and C) 16 + 4 = 20

p 4 all pointers take up 4 bytes

struct node, using an int array
instead of a char array (versions
A and C)

8*4 + 4 = 36 each int is 4 bytes

struct node (versions B and D) 16*4 + 4 = 68

Answers were 2 points each. If you consistently used the wrong size of a pointer but had
everything else right, you received 2 on parts a and c and 0 on part b. Otherwise, partial
credit was given only for small arithmetic errors.

 2

Problem 2 (10 points)
Part a of this problem was to decode a machine language instruction. Solutions appear in
the table below. All the shamt bit fields were 0.
version machine

instruction
op
code

rs rt rd funct assembly language
version

A 0x023B3821 0 0x11 0x1b 0x07 0x21 addu $7 $17 $27

B 0x02E36822 0 0x17 0x03 0x0d 0x22 sub $13 $23 $3

C 0x00AFC824 0 0x05 0x0f 0x19 0x24 and $25 $5 $15

D 0x03B34825 0 0x1d 0x13 0x09 0x25 or $9 $29 $19

This part was worth 2 points. You may have earned partial credit for a small error, for
instance, getting the register fields out of order. Other errors included the following:

• reading the funct field as decimal rather than binary;
• misassociating the function field with the opcode of the same value (for example,

decoding addu as lh).
Parts b and c of this problem were to write functions in C and assembly language to de-
termine if the argument is a certain kind of instruction: sub in version A, and in version
B, or in version C, and addu in version D. This involved isolating the op code and mak-
ing sure it's 0, then checking the funct field for the relevant bit pattern. Here are some
sample C solutions for isSub and their assembly language counterparts.
int isSub (unsigned int instr) {
 return !(instr & 0xFC000000)
 && (instr & 0x3F == 0x22);
}

isSub:
 srl $t0,$a0,26
 bne $t0,$0,returnfalse
 andi $a0,$a0,0x3F
 addi $t1,$0,0x22
 bne $t1,$a0,returnfalse
returntrue:
 addi $v0,$0,1
 jr $ra
returnfalse:
 add $v0,$0,$0
 jr $ra

 return (instr & 0xFC00003F == 0x22);

isSub:
 lui $t0,0xFC00
 ori $t0,$t0,0x3F
 and $t0,$t0,$a0
 addi $t1,$0,0x22
 addi $v0,$0,1
 bne $t0,$t1,returnfalse
 jr $ra
returnfalse:
 add $v0,$0,$0
 jr $ra

 3

The C and the assembly versions were each worth 4 points. Deductions were as follows:
–1 for each small bug, e.g. using a mask that is off by one, shifting incorrectly, using &
for && or vice versa, using a hex value without preceding it with 0x, switching the true
and false cases, not using $a0 or $v0, omitting jr $ra, or forgetting the label naming the
function in the assembly language version;

–2 for forgetting to check for a 0 op code, thinking that the funct value is in the op code,
or for lui errors in loading an immediate operand;

–3 for assuming that everything but the funct field is 0.
You were allowed to require that the shamt field was 0. Some of you may have incor-
rectly lost points for doing so.

Mistakes in part b were usually repeated in part c. In this case, you lost points in both
parts, reflecting the intent of the question to assess understanding of instruction format
rather than C programming. In addition, you lost 1 point for each pseudoinstruction used
in part c. Examples of pseudoinstructions are

bge, bgt, ble, blt j with a register argument

move, li andi with an argument longer than 16 bits

Some of these were listed on the MIPS reference card handed out with the exam. li was
an especially popular pseudoinstruction.

Problem 3 (14 points)
This problem involved making sense of a layout of memory. There were two versions,
diagrammed below. In both, the variable p points to the first node in a three-element
linked list.

A0 000000D8

A4 00000004

A8 000000B4

AC 000000A4

B0 000000D4

B4 00000008

B8 0000000C

BC 000000D4

C0 000000DC

C4 00000000

C8 000000A8

CC 000000B4

D0 00000064

D4 000000CC

D8 000000C0

DC 000000D0

p

p

60 00000098

64 00000060

68 00000074

6C 0000009C

70 00000098

74 00000090

78 00000090

7C 0000009C

80 00000000

84 00000090

88 00000078

8C 00000000

90 00000060

94 00000088

98 00000068

9C 00000070

struct node *: B0, C4, D8
int *: AC, C0, D4
int: A4, CC, DC

struct node *: 74, 8C, 94
int *: 70, 88, 90
int: 60, 78, 90

Versions B and D Versions A and C

 4

Part a was to use the memory diagram to identify the type and value of some C expres-
sions. There were ten blanks; you received 1 point for each blank correctly filled in.

Versions A (same as version C, but with choices permuted)
expression type value (in hex)
p->values int * 98

p.values illegal no possible value
*(p->next) struct node {60, 88}

(p->values)+4 int * A8

&(p->values) int ** 70

Version B (same as version D, but with choices permuted)
expression type value (in hex)
p->values int * A4

p.values illegal no possible value
*(p->next) struct node {CC, C0}

(p->values)+4 int * B4

&(p->values) int ** AC

In part b, you had to identify the int values in memory. These were the locations pointed
to by int * values. Only the first thing pointed to by each int * is guaranteed to be an int.
In versions A and C, the ints are 60 (pointed to by 90), 78 (pointed to by 88), and 98
(pointed to by 70). Version B/D's counterparts are A4 (pointed to by AC), CC (pointed to
by D4), and DC (pointed to by C0).
This part was worth 4 points. You lost 1 point for each missing or incorrectly identified
location, except that you earned some partial credit if you confused ints and int *'s.

 5

Problem 4 (14 points)
Part a of this problem required translating an assembly function to C. Solutions are be-
low.
versions A and C versions B and D

update:
 lw $t0,0($a0)
 lw $t1,0($a1)
 ble $t0,$t1,update0
update1:
 addi $t1,$t1,1
 sw $t1,0($a1)
 jr $ra
update0:
 addi $t0,$t0,1
 sw $t0,0($a0)
 jr $ra

update:
 lw $t0,0($a0)
 lw $t1,0($a1)
 bgt $t0,$t1,update0
update1:
 addi $t1,$t1,-1
 sw $t1,0($a1)
 jr $ra
update0:
 addi $t0,$t0,-1
 sw $t0,0($a0)
 jr $ra

void update (int * a, int * b) {
 if (*a > *b) {
 (*b)++;
 } else {
 (*a)++;
 }
}

void update (int * a, int * b) {
 if (*a <= *b) {
 (*b)--;
 } else {
 (*a)--;
 }
}

void update (int a[], int b[]) {
 if (a[0] > b[0]) {
 b[0]++;
 } else {
 a[0]++;
 }
}

void update (int a[], int b[]) {
 if (a[0] <= b[0]) {
 b[0]--;
 } else {
 a[0]--;
 }
}

This part was worth 8 points, split 3 for the function header, 3 for pointer or array use
within the function, 1 for a correct comparison, and 1 for a correct increment/decrement.
If you didn't use arrays or pointers, you could earn at most 2 for this part. Note that you
need parentheses around the incremented or decremented pointer; forgetting this lost you
the increment/decrement point.

 6

In part b, you were to explain the effect of inserting a jal at the start of the function, and
then to correct the problem. Executing the jal would certainly overwrite $ra and probably
the argument registers, so the fix is to save them prior to executing the jal and then to re-
store them on return. Here's a solution (the same in all versions).
update:

addi $sp,$sp,-12
sw $ra,0($sp)
sw $a0,4($sp)
sw $a1,8($sp)
jal printargs
lw $ra,0($sp)
lw $a0,4($sp)
lw $a1,8($sp)
addi $sp,$sp,12
 … (the remainder of update goes here)

This part was worth 6 points, 3 for $ra and 3 for $a0+$a1. 2 points were deducted for
using an $s register to store $ra without saving and restoring the $s register's previous
value, or for using $s registers to store $a0 and $a1 without saving. If you did both, you
lost 4 points.

Problem 5 (14 points)
This problem was the same in all versions. In part a, you were to provide a C implemen-
tation of addNcopies. This problem was the same in all versions. Here are iterative and
recursive implementations.

struct node * addNcopies (int n, char * str, struct node * p) {
 int k;
 struct node * temp;
 for (k=0; k<n; k++) {
 temp = (struct node *) malloc (sizeof (struct node));
 temp->info = (char *) malloc ((strlen(str)+1)*sizeof(char));
 strcpy (temp->info, str);
 temp->next = p;
 p = temp;
 }
 return p;
}

struct node * addNcopies (int n, char * str, struct node * p) {
 int k;
 struct node * temp;
 if (n == 0) {
 return p;
 }
 temp = (struct node *) malloc (sizeof (struct node));
 temp->info = (char *) malloc ((strlen(str)+1)*sizeof(char));
 strcpy (temp->info, str);
 temp->next = p;
 return addNcopies (n-1, str, temp);
}

 7

The malloc calls were an important part of this exercise. Maximum score was 10 points,
allocated 5 for the inner malloc (temp->info in the solutions above), 3 for the outer mal-
loc (temp in the solutions) and the linkage of the copies into the list, and 2 for essentially
everything else. Saying only temp->info = s; without calling malloc for the string lost
you all 5 of the inner malloc points. Copying characters into temp->info without doing
malloc lost you 3 points. Both errors were quite common.
1 point was deducted for each of the following:

• orphaned storage, usually due to an extra malloc (you lost 2 points for O(n) extra
mallocs);

• a pointer or parameter error;

• use of sizeof(s) or strlen(s) rather than strlen(s)+1;
• a missing return; or

• an easy-to-fix off-by-one error (harder-to-fix off-by-one errors lost 2 points).
In general, approaches that attached each node to the front of the list did better than ap-
proaches that added each node to the end of a list of new nodes and then hooked the end
up to the argument list prior to return.

You were allowed to omit the cast of malloc's result, and to assume sizeof(char) == 1.
We did not penalize you for copying the list argument as well as the new nodes.

In part b, you were to provide an assembly language segment that called addNcopies, by
translating the statement

q = addNcopies (2, str, p);

to MIPS assembly language. Here's a solution.
li $a0,2
la $a1,str
lw $a2,p
jal addNcopies
sw $v0,q

This part was worth 4 points. You lost 1 point for each wrong load. Saying la $a2,p was
an especially common error. You also lost 1 point for using a wrong register (say, $a1-
$a3, or $a0, $a1, and $a3), saving $a0-$a2 or $v0 prior to the call, or for using incor-
rect assembly language syntax (e.g. with 0(p)).
We incorrectly deducted a point for saving $ra. This point will be restored. Moreover, we
concluded after deducting a point for not updating q that the wording of the problem may
have led you to believe that you didn't need to worry about it. This point will also be re-
stored.

