

A1

Assembly language

Problem 1

Consider this C struct definition:

struct foo {
 int *p;
 int a[3];
 struct foo *sf;
} baz;

Suppose that register

$16

 contains the address of

baz

.

For each of the following C statements, indicate which of the MIPS assembly lan-
guage code fragments below (A-H) could be the result of compiling it.

codeA: lw $8, 0($16)
 sw $8, 4($16)

codeB: lw $8, 0($16)
 lw $9, 0($8)
 sw $9, 4($16)

codeC: lw $8, 4($16)
 sw $8, 0($16)

codeD: sw $16, 16($16)

codeE: lw $17, 6($16)

codeF: lw $17, 12($16)

codeG: lw $8, 0($16)
 sw $8, 16($16)

codeH: addi $8, $16, 4
 sw $8, 0($16)

____ number = baz.a[2];

____ baz.p = baz.a;

____ baz.a[0] = *baz.p;

____ baz.sf = &baz;

Problem 2

Translate the following C procedure to MIPS assembly language. Assume that argu-
ments are passed in registers.

int garply (int a, int *b) {
 int c;
 c = subt(a >> 6);
 *b = a + *b;
 if (a < 0) || c < 0)
 return c;
 else
 return c | a;
}

A2

Problem 3

Consider the following fragment of a C program.

int v[10], s;
int *p;
s = 17;
for (p = &v[3]; *p != 0; p++)
 s = s + *p;

Here is a buggy translation in MIPS assembly language, assuming

s

 is in

$16

 and

p

is in

$19

.

 or $16, $0, $0
 lw $19, v+12
loop:
 bne $8, finish
 add $16,$19,$16
 addi $19, 1
 j loop
finish:

There are six errors, including one missing instruction, in this translation. Find and
fix them.

Problem 4

Consider the following MIPS assembly language routine. (The numbers on the left
are just line numbers to help in your answer.)

foo

 takes two integer arguments. The
caller of

foo

 and its callee

bar

 follow the MIPS procedure call conventions. Assume

var1

 has been declared in the

.data

 section with the

.word

 directive.

1 foo: addi $sp, $sp, -20
2 sw $s0, 16($sp)
3 sw $s1, 12($sp)
4 la $t0, var1
5 lw $t0, 0($t0)
6 add $t1, $a1, $a0
7 addi $s0, $t1, 10
8 add $s2, $s0, $t1
9 add $a0, $0, $s2
10 jal bar
11 add $t2, $t1, $v0
12 add $s1, $t2, $a1
13 add $v0, $0, $s1
14 lw $s1, 12($sp)
15 lw $s0, 16($sp)
16 addi $sp, $sp, 20
17 jr $ra

a. Describe four bugs that are present in the code.

b. For each of these bugs, explain in one sentence either (i) why it will definitely
cause the program not to work or (ii) under what condition will the program work
correctly, in spite of the bug.

A3

Problem 5

Compile the following C code into MIPS.

struct Node {
 int data;
 struct Node *next;
};

int sumList (struct Node *nptr) {
 if (nptr == NULL) return 0;
 else return (nptr->data + sumList (nptr->next));
}

Your code must contain meaningful comments and adhere to the MIPS calling con-
vention and register usage conventions. You are allowed to use pseudoinstructions
to make it more readable. It should be clean and well structured. It needs to be
right, not optimal, but your answer cannot be longer than 20 instructions.

Problem 6

Translate the C function

printDownUp

 to MIPS assembly language, retaining its
recursive structure, passing its argument in the appropriate register, and following
the usual register conventions. Translate

putchar

 into a

putc

 pseudoinstruction
whose register argument contains the character to print.

void printDownUp (char c) {
if (c == 'a') {

putchar (c);
} else {

putchar (c);
printDownUp (c-1);
putchar (c);

}
}

A4

Problem 7

Consider a list with nodes defined in C as follows.

struct ListNode {
char name[6];
int code[3];
struct ListNode* next;

};

The diagram below, not drawn to scale, gives an example of such a list.

Part a

Assume that register

 $a1

 contains a pointer to the first node of the list. Write MIPS
assembly language code that loads

$s2

 with the second integer in the second node in
the list (with the list pictured above, this will load a 5 into

$s2

).

Part b

Again assume that register

$a1

 contains a pointer to the first node of the list. Write
MIPS assembly language code that loads

$s2

 with the fourth character in the third
node in the list (with the list pictured above, this will load 'n' into

$s2

).

'm' 'i' 'k' 'e' 'j' 'o' 'h' 'n''d' 'a' 'v' 'i' 'd'

7 4 1 8 5 0 2 9 6

A5

Problem 8

Consider the following C functions that check if one string contains another as a sub-
string. The terms “string 1” and “string 2” are used in the comments to mean the
strings represented by

s1

 and

s2

 respectively.

int containsAsSubstring (char *s1, char *s2) {
if (*s2 == '\0') { /*

if string 2 has run out,

 */
return 1; /*

it's a substring of string 1.

 */
} else if (*s1 == '\0') { /*

if string 1 has run out,

 */
return 0; /*

string 2 isn't a substring of string 1.

 */
} else if (startsWith (s1, s2)) {

return 1;
} else {

return containsAsSubstring (s1+1, s2);
}

}

int startsWith (char *s1, char *s2) {
if (*s2 == '\0') { /*

any string starts with the empty string

 */
return 1;

} else if (*s1 == '\0') { /*

if string 1 has run out,

 */
return 0; /*

it doesn't start with string 2

. */
} else if (*s1 != *s2) {

return 0;
} else {

return startsWith (s1+1, s2+1);
}

}

Some examples of how

containsAsSubstring

 behaves are listed below.

Fill in the missing code in the MIPS assembly language implementation of

contain-
sAsSubstring

 below. (Don't worry about

startsWith

.) Your code should perform as
described in the accompanying comments, and should follow conventions described
in class and in lab and homework assignment 6 for passing arguments and manag-
ing registers and the system stack. You may assume that neither argument pointer
is null.

string 1 string 2 result of

containsAsSubstring

"abcde” "abc”

1

"xyabc” "abc”

1

"axbc” "ab”

0

"xy” "abc”

0

A6

containsAsSubstring:

save registers on the stack

check base cases

beqz $t1,returnTrue
beqz $t0,returnFalse

move $s0,$a0 # does string 1 start with string 2?
move $s1,$a1
jal startsWith
bnez $v0,returnTrue

add $a0,$s0,1 # no match; make recursive call
move $a1,$s1
jal containsAsSubstring
j return

returnTrue:
prepare to return 1

j return
returnFalse:

prepare to return 0

return:
restore registers and return

A7

Problem 9

Here is the

pwdHelper

 function from project 1. The declaration of

struct entryNode

appears on the last page of this exam.

void pwdHelper (struct entryNode * wd) {
if (strcmp (wd->name, "/") != 0) {

pwdHelper (wd->parent);
printf ("/%s", wd->name);

}
}

Write an assembly language version of

pwdHelper

 that retains the recursive struc-
ture and follows all conventions for register use and stack management. You may
use pseudoinstructions. Assume that functions named

strcmp

 and

printf

 are accessi-
ble from your function, and that they also follow all conventions for register use and
stack management.

.text .data

A8

Problem 10

Part a

Given the following definition,

struct node {
char name[12];
int value;

};

what is

sizeof (struct node)

? _____

Assume that the sizes of

char

s and

ints are the same as on the 271 Soda computers.

Part b

Translate the following code to assembly language in the space that follows. Your
solution should adhere to conventions described in P&H. Comments in your code will
help us understand your solution approach, and may earn you partial credit for an
incorrect solution.

void exam1 (struct node **to) {
exam2 (*to);
(*(to-1))--;

}

prolog: save information on stack if necessary

exam1:

call exam2

compute (*(to-1))--

epilog: restore necessary things and return

A9

Problem 11

Suppose that the label names marks the beginning of an array of strings. In MIPS
assembly language, this might appear as follows:

names: .word starting address of first string
.word starting address of second string
 ...

Give a MIPS assembly language program segment that loads the fourth character of
the second string into register $t0. For example, if the array contains the strings
"mike", "clancy", "dave", and "patterson", this character would be the 'n' in "clancy".
Assume that there are at least two strings in the array and at least four characters
in the second string.

A three-line solution is sufficient. You may use any registers you want.

A10

Problem 12

Complete the given framework to produce an assembly language function named
reverse that implements the following (equivalent) Scheme and C functions:

Scheme
(define (reverse L soFar)

(if (null? L) soFar
(reverse (cdr L) (cons (car L) soFar))))

Equivalent C version
struct Thing {

... (as in project 1)
}

typedef struct thing *ThingPtr;

ThingPtr reverse (ThingPtr L, ThingPtr soFar) {
if (L == NIL) {

return soFar;
} else {

return reverse (L->th_cdr, cons (L->th_car, soFar));
}

}

The code you supply should match the associated comments. Don’t worry about
memory allocation; the cons function will deal with that.
reverse:

Save relevant registers on stack.

Check base case.

recursive:
Prepare for call to cons.

jal cons

Prepare for recursive call to reverse.

jal reverse

return:
Pop stack, restore relevant registers, and return the desired result.

A11

Shifting and bitwise operations

Problem 13

Write a sequence of no more than six MIPS instructions that extracts bits 17:11 of
register $s0 and inserts them into bits 8:2 of register $s1, leaving all the remaining
bits of $s1 unchanged. You may use $t registers as temporaries.

Problem 14

Consider a function isolateFloatFields that isolates components of a normalized posi-
tive floating point value in IEEE 32-bit format. Given such a value, isolateFloatFields
should return

a. the exponent, and

b. the integer that results from omitting the binary point from the fraction repre-
sented by the significand.

For example, if the value 2.875 base 10 (which is 1.0111 • 21) is passed to isolate-
FloatFields, it should return the integer 1 for the exponent and the integer whose
binary representation is 10111 followed by nineteen zeroes for the significand.

Complete the assignment statements in the C version of the function isolateFloat-
Fields below.

The theBits function returns an unsigned integer whose bits are the same as those of
its float argument. It's needed since bitwise operators in C may not be applied to
float values.

void isolateFloatFields (float x, int *exponent, int *fractBits) {
unsigned int bits = theBits (x);
*exponent = ____________ ;
*fractBits = ____________ ;

}

Problem 15

Assume that $t0 contains an I-format MIPS instruction. In both parts of this prob-
lem, you are to write an assembly language segment that puts the sign-extended
immediate field of the instruction into $t1. For example, if the instruction in $t0 were
the machine language encoding of addi $a0,$a0,–17, you would store –17 in $t1. You
may use pseudoinstructions and other temporary registers in your solution.

Part a

Give an assembly language program segment that copies the sign-extended immedi-
ate field of the machine code instruction in $t0 into $t1, that consists only of shift
instructions.

Part b

Give an assembly language program segment that copies the sign-extended immedi-
ate field of the instruction in $t0 into $t1, that does not contain any shift instructions.

A12

Problem 16

In lab, you wrote a function that returned the contents of the various fields of a
MIPS I-format instruction. In this problem, we consider a similar task for the Prune
100 computer. The Prune, like the MIPS, has 32-bit instructions. The Prune has only
16 registers. In an I-format Prune instruction, the meaning of the bits is as follows.

• The first 8 bits are the op code.

• The next 4 bits are the register to be modified by the instruction.

• The last 20 bits are the immediate operand, in 1's complement.

Thus the equivalent to the MIPS assembly language instruction addi $10,-2 might
appear in hexadecimal as

94 af ff fd

if the op code for the addi instruction were 94 base 16.

On the next page, write a MIPS assembly language function splitIFormat that returns
the contents of the register and immediate fields of a Prune 100 I-format instruction.
If written in C, its prototype would be

void splitIFormat (int instr, int *register, int *immediate);

Follow the conventions described in class and in lab for passing arguments and man-
aging registers and the system stack. Provide comments sufficient for the graders to
understand your work.

A13

Machine language; architecture; the assembly process

Problem 17

What is the result of interpreting 0x82988000 as a MIPS instruction? Give your
answer as an assembly language instruction, use numeric register names, and show
intermediate steps.

Problem 18

Which of the following is true of the ori instruction? Briefly explain your answer.

a. ori is always translated by the assembler into a single native MIPS instruction.

b. ori is always translated by the assembler into a sequence of two or more native
MIPS instructions.

c. ori is sometimes translated by the assembler into a single native MIPS instruc-
tion and sometimes into a sequence of two or more native MIPS instructions.

Problem 19

Why did the MIPS designers use PC-relative branch addressing (One sentence is
enough!)

Problem 20

Assemble the following MIPS instructions into executable binary. Show the position
of each field by drawing a box around the corresponding bit positions.

Problem 21

Decode the following binary numbers as MIPS instructions and give the equivalent
MIPS assembly language statements.

address value

0x40 10001100101101110000000000100100

0x44 00000010111001001011000000100011

0x48 00011110110000001111111111110000

address assembly language instruction machine language instruction

0x400000 addi $a0, $a0, -4

0x400004 L0: bne $s1, $t2, L1

0x400008 lw $s2, 128($sp)

0x40000c j L0

0x400010 L1: subu $v0, $a0, $s0

A14

Problem 22

Part a

Translate the following program segment to native MIPS instructions. You may use
either names or numbers for the registers.

li $t1,-5
loop: sub $t1,$t1,3

bgt $t1,$a1,loop

Equivalent native MIPS segment:

Part b

Your answer to part a should include a branch instruction. Translate this branch
instruction to machine language by filling in the boxes below with 0's and 1's.

A15

Floating-point computation

Problem 23

Part a

Convert 6.25 to IEEE single precision. Show your work, and give your answer in
binary.

Part b

Show all the steps involved in computing the single-precision floating-point sum of
0x43D55555 and 0x41ADDEB7. Give the result in hexadecimal. (Don’t convert any-
thing to decimal.)

Part c

What is the result of interpreting 0x82988000 as a single precision IEEE floating-
point value? Give your answer as a sum of powers of 2, and show intermediate steps.

Problem 24

Encode the value 17.2510 according to the single precision IEEE floating-point stan-
dard and show its representation in hexadecimal.

Problem 25

Given below is a MIPS assembly language program segment that computes (x+1.0)2
by adding x2 to 2x, then adding 1 to that sum.

.data
x: .float
answer: .float
one: .float 1.0

.text
__start:

l.s $f4,x
l.s $f6,one

mul.s $f8,$f4,$f4 # x2

add.s $f8,$f8,$f4 # + 2*x
add.s $f8,$f8,$f4
add.s $f8,$f8,$f6 # + 1.0
s.s $f8,answer

Part a

Consider the case where x is 2.012. What is the difference between the value stored in
answer and the actual value of (2.012 + 1.0)2 ? (If the answer is computed correctly,
the difference will be 0.) Show your work.

A16

Part b

Does the sequence in which the terms are added affect the correctness of the answer?
Briefly explain.

Problem 26

Consider the following C program segment.
int k, saved_k;
float x;

...
saved_k = k;
x = (float) k;
k = (int) x;
if (k == saved_k) {

printf ("no change after conversion to float\n");
} else {

printf ("change after conversion to float\n");
}

Recall that a cast converts the casted value to the given type. Thus if k contains the
integer 3, the assignment

x = (float) k;

results in x containing the floating point value 3.0.

Assume for the following questions that an int and a float each use 4 bytes of memory,
that a double uses 8 bytes of memory, and that a float and a double are stored using
IEEE floating-point representation.

Part a

Find an int value k for which the above program segment produces the output
change after conversion to float

and give its hexadecimal (not decimal) representation.

Part b

Suppose that x in the above program segment was declared as double, with k being
correspondingly cast to double. Would the output still be the same, using your
answer to part a? Briefly explain.

Part c

Return now to the original program segment, and give the largest (signed) hexadeci-
mal integer value that k could contain and still produce the output

no change after conversion to float

Briefly explain your answer.

A17

Part d

Give the 4-byte (single precision) IEEE floating-point representation (in hexadeci-
mal) of your answer to part c. Show how you got your answer.

Problem 27

Consider a representation (diagrammed below) for storing 8-bit floating point values
that’s exactly the same as the IEEE floating point representation except that three
bits are allocated to the exponent and four to the significand.

Part a

Express in decimal the value represented by the byte 0xC1. Show your work for full
credit.

Part b

Let a be the value represented by the byte 0xC1. Determine a value b that, when
added to a using the byte counterpart of IEEE floating point addition, produces a
result that’s not equal to the algebraic sum of a and b. Express this value in hexadec-
imal, and verify the mismatch of the computed and the algebraic sum.

sign exponent significand

A18

Linking

Problem 28

For each of the following utilities, specify what it takes as input and what it produces
as output. Describe one key function it performs in this translation.

Compiler

Assembler

Linker

Loader

Problem 29

Given below are two assembly language program segments that are to be linked
together with library code containing the getchar and malloc functions. On each line,
specify how many entries in the relocation table would be produced by the assembler
for the code on that line. (Put 0 for each line that doesn’t generate a relocation table
entry.)

Note that neither of these files is the result of compilation from C.

In the file main.s In the file node.s

.text

start:

li $t0,0

sw $t0,head($0)

loop:

jal getNode

beqz $v0,gotAll

lw $t0,head($0)

sw $0,4($v0)

sw $v0,head($0)

j loop

gotAll:

...

.data

head:

.word 0

.text

getNode:

addi $sp,$sp,-8

sw $ra,0($sp)

sw $s0,4($sp)

jal getchar

beqz $v0,return

ori $v0,0x20

move $s0,$v0

li $a0,8

jal malloc

sw $s0,0($v0)

return:

lw $ra,0($sp)

lw $s0,4($sp)

addi $sp,$sp,8

jr $ra

A19

Problem 30

Consider the following three machine instructions, which appear in memory starting
at the address 0x00400000.

Part a

“Disassemble” the instructions; that is, give an assembly language program segment
that would be translated into the given machine language. You may use numeric
rather than symbolic register names. A list of op codes (Figure A.19 from P&H)
appears at the end of this exam.

Handle branches and jumps specially; where you would normally have a label, pro-
vide instead a hexadecimal byte address. For example, you should list a jump to the
first instruction as

j 0x00400000

and represent a branch to the first instruction, say bltz, similarly as
bltz $9,0x00400000

Part b

For each of the instructions, indicate whether (a) it must have contributed an entry to
the relocation table, (b) it may have contributed an entry to the relocation table, or (c)
it could not have contributed an entry to the relocation table. Briefly explain your
answers.

address (in hex) contents (in hex)

00400000 12080002

00400004 3C11FFFF

00400008 08100004

address (in hex) contents (in hex) explanation of why this instruction must have, may have,
or could not contribute relocation entry

00400000 12080002

00400004 3C11FFFF

00400008 08100004

A20

Problem 31

Consider the following assembly language program segment, which loads $t0 with
the larger of $a1 and an integer labeled by value.

lui$at, upper half of value
lw $t1, lower half of value($at)
slt $at, $t1, $a1
beq $at, $0, t1greater
add $t0, $0, $a1
j gotmax

t1greater:
add $t0, $0, $t1

gotmax:
...

Part a

The table below lists some of the statements in the program segment. Indicate which
of the statements listed below will be represented by an entry in the relocation table.

statement
will it contribute an entry
to the relocation table?
(yes or no)

lui $at, upper half of value

lw $t1, lower half of value($at)

beq $at,$0,t1greater

j gotmax

A21

Part b

Given below is the part of the text segment of max.o that’s the assembled version of
the assembly language segment above. Assume that when the code is included in a
program that is assembled into a file named max.o,the instruction labeled by
t1greater is the 25th instruction in max.o’s text segment and the word labeled by
value is the third word in max.o’s data segment. Fill in the missing hexadecimal dig-
its. Show your work.

instruction corresponding hexadecimal value

lui $at, upper half of value 3C01 _____________

lw $t1, lower half of value($at) 8C29 _____________

slt $at,$t1,$a1 0125 082A

beq $at,$0,t1greater 1020 _____________

add $t0,$0,$a1 0005 4020

j gotmax ____________________

t1greater:
add $t0,$0,$t1

0009 4020

gotmax: ...

A22

Circuits and boolean algebra

Problem 32

Consider a logic circuit that, given inputs x0, x1, and x2, produces a binary encoding
in outputs q1 and q0 of how many of the xk are 1. A truth table relating q1 and q0 to
the xk appears below.

Using and, or, not, and xor, design Boolean equations to represent the circuit. Your
equations should be simplified where possible; show your work.

x0 x1 x2 q1 q0

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

