
Problem 1 (logic design) 
For this problem, you are to design and implement a sequential multiplexor that works as 
follows. On each clock cycle, interpret the current input as a selector from the most 
recent input (operand 0) and the input before that (operand 1), and output the result. All 
signals are one bit each. Here is a timing diagram. 
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Draw a schematic (a logic diagram) for your implementation. 
 
You may wish to add timing waveforms for signals inside your circuit to the above 
diagram. You may also use a state transition diagram. Neither of these will be scored, but 
they may prove useful in designing and visualizing a solution. [Note that timing diagrams 
were not covered in CS 61CL this semester.] 



Problem 2 (CPU design) 
The RISC approach is carried to an extreme in the Single Instruction Computer (SIC). 
This computer has no registers and only one instruction: 
 

sbn addr1, addr2, jumpAddr (Subtract and Branch if Negative) 
 

Given three memory addresses addr1, addr2, and jumpAddr, this instruction subtracts 
the contents of addr2 from the contents of addr1, stores it into the location addressed by 
addr1, and if the result of the subtraction is negative, jumps to the instruction addressed 
by jumpAddr. In more concise notation, 
 

Mem[addr1] = Mem[addr1] - Mem[addr2];  
if (Mem[addr1] < 0) go to jumpAddr; 
 

The SIC program segment shown below copies a number from location a to location b. It 
assumes that temp labels a spare memory word that can be used for temporary results. 
 

 .text 
copy: 
 sbn temp,temp,label1 # sets temp to 0; does not branch 
label1: 
 sbn temp,a,label2    # sets temp to -a;  
 # continues with next instruction regardless of a’s sign 
label2: 
 sbn b,b,label3       # sets b to 0; does not branch 
label3: 
 sbn b,temp,label4    # sets b to -temp, which is a; 
 # continues with next instruction regardless of b’s sign 
label4: 
 ... 
 .data 
temp: 
 .word 0 
 

Now consider the instruction encoding and implementation of this computer. Since 
there’s only one instruction, there’s no need for an op code. The format of an SIC 
instruction is merely three 32-bit addresses as shown below: bits 95-64 represent addr1, 
bits 63-32 represent addr2, and bits 31-0 represent jumpAddr.  

addr1 addr2 jumpAddr
95 64 63 32 31 0

 
One instruction is executed per clock cycle. Instruction memory is separate from data 
memory. Assume also that a special data memory is used that can read and write multiple 
values in the same clock cycle. 



Part a 
Complete the diagram of the circuitry of the SIC CPU below.  
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Part b 
Explain at least one aspect of this architecture that would make it hard to pipeline. 



Problem 3 (CPU design) 
Consider the addition of the max instruction to the MIPS instruction set: 

max Rdest, Rsource1, Rsource2 
It stores the larger of the values in registers Rsource1 and Rsource2 into register 
Rdest.  
Part a 
Design a machine representation for the max instruction that’s consistent with the 
existing MIPS instructions. Clearly indicate the purpose of each bit field in the 
instruction, using the format of Patterson and Hennessy appendix A.  
 
Part b 
Indicate by descriptions below and by additions to Figure 5.19 what changes to the 
datapath are necessary and what values existing signals must take on to implement the 
max instruction. Briefly explain your answers. You may assume that a new Max signal is 
provided by the instruction decoder. Your changes should not involve changing the ALU 
or adding a new ALU. 
Values of existing signals: 
Max = 1 Branch =  
MemRead = MemtoReg = MemWrite = 
RegDst = RegWrite =  
ALUSrc = ALUOp =  
ALU control =   
 
Brief explanation of control signal values: 
 
 
Other changes: 
 
 



Problem 4 (caches) 
Part a 
Consider a 4-kilobyte direct-mapped cache with a block size of 2 words. Indicate below 
which bits of a 32-bit address form the tag, which form the cache index, and which form 
the byte offset (the position in the block). 
 
Part b 
Consider now a 8-word direct-mapped cache with 2-word blocks, and suppose that the 
following sequence of memory accesses is made (e.g. with a sequence of loads) with an 
initially empty cache. Identify which accesses are hits, which are misses that fill in a 
block, and which are misses that cause a block to be replaced, by marking each with H, 
M, or MR. 

hex byte address hit (H), miss (M), or miss with replacement (MR)? 
4512  
4514  
4504  
4501  
4508  
4584  
4518  
4501  

 



Problem 5 (caches) 
Consider a 16-word (not counting tags) 2-way associative cache with a block size of 4 
words using LRU replacement.  
Part a 
Indicate which bits of a 32-bit address form the tag, the cache index, and the byte offset. 
 
Part b 
Suppose that the contents of memory between byte addresses 52 and 83 are as shown 
below. 
byte 
address 

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 

contents 3 1 4 5 
 
byte 
address 

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 

contents 9 2 8 6 
 
In the diagram below, fill in the result of loading the word at address 68, using a cache 
that’s initially empty. 

set data (contents) 
     0

      
    1 
    

 
Part c 
The cache.c program from homework 9, run on a computer with the cache just described 
(and no secondary cache), produces a “read+write” time of 100ns in the situation where 
the number of cache hits is maximized and a time of 900ns when the number of cache 
hits is minimized.  
 
By filling in the bottom row of the table below, indicate what times this run of cache.c 
might produce for a 32-word array with strides ranging from 1 to 16 words. Each value 
will be one of the following: 100ns, 300ns, 500ns, 900ns.  
 

stride in words 
stride in bytes 

size in 
words    bytes 

1 
4 

2 
8 

4 
16 

8 
32 

16 
64 

    8          32 100 100 100   
   16         64 100 100 100 100  
   32        128      
      



Problem 6 (K&R storage management code) 
Suppose that a programmer using the K&R storage allocator accidentally overwrites the 
size of an allocated block—we’ll call it B—with a 0.   
What will be the effect of this accident? 

• The accident won’t cause any problem at all. 
• The accident will cause a crash when the overwrite occurs. 
• The accident will cause a crash when block B is freed. 
• The accident may cause a crash somewhere after the overwrite, but not 

necessarily when block B is freed. 
• The accident won’t cause a crash, but it will produce some storage that can no 

longer be used (a memory leak). 
Briefly explain your answer. 
 



Problem 7 (virtual memory) 
For this problem, make the following assumptions. 

• The TLB is fully associative, and holds four entries. 
• The program counter contains 0x00408940. 
• The instruction at virtual address 0x00408940 is lw $t1, 0($t0). 
• Register $t0 contains 0x1002A128.  
• The page size is 8K. 
• The address of the page table is kept in a special hardware register (so it doesn’t 

need to be kept in the TLB). 
• The TLB is currently empty. 
• The page table contains the following valid entries: 

virtual page 
number 

physical page 
number 

0x000102 0x023 
0x000204 0xFF4 
0x000408 0x038 
0x00400A 0xFEA 
0x004089 0xABC 
0x008015 0x5BC 
0x01002A 0x891 
0x1002A1 0x007 

 
What does the TLB contain after execution of the lw instruction at address 0x00408940? 
 



Problem 8 (virtual memory) 
Homework 9 involved a two-level page table, represented in the diagram below. 

page offsetpage table offsetpage table number
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…
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For the homework, we assumed that the length of a virtual address was 32 bits. List three 
different ways of accommodating a 33-bit virtual address in this address translation 
system while retaining the two-level table structure and 32-bit physical address length. 
For each method you list, describe its specific effect on page sizes and the page tables. 
 



Problem 9 (virtual memory) 
Suppose that a MIPS computer has a fully associative TLB, a 32-bit virtual address 
space, and a page size of 4KB. Suppose also that a suspended process gets swapped in, 
the TLB gets emptied, and the process resumes execution at virtual address 404FA000. 
Finally, suppose that after a small number of instructions, the program has made no 
references to data memory, and the TLB contains two valid entries: 

tag physical page address 
404FA 00272 
08A1E 00138 

 
What MIPS instructions and pseudoinstructions were executed to produce the above TLB 
contents? List each one below (in assembly language format) along with its virtual 
address. 



Problem 10 (i/o) 
The MIPS assembly program on the next page reads exactly 1024 keystrokes from the 
keyboard and sends them over a modem in any order. It also performs “other work” while 
waiting for data.  
The keyboard  
The code at intHandler is the interrupt handler for the keyboard. When a key is pressed 
on the keyboard, it triggers the interrupt. The interrupt handler is then invoked and should 
then read the character corresponding to the pressed key from address 0x00FF0000.  
The modem  
The modem’s status can be read from address 0x00FA0000; if this value is zero, the 
modem is ready to accept data. Data is sent to the modem by writing to address 
0x00FA0004.  
The buffer  
Since the order of the keystrokes does not need to be preserved, the programmer has 
chosen to store them in a stack at address stack. The word at address stackTop contains 
the address of the top of the stack. 
 
1  
2 stack: .space 1024 
3 stackTop: .word stack  
4  
5 intHandler:  
6 la $k0,0x00FF0000 # $k0 = address of keyboard data  
7 lb $k0,0($k0) # $k0 = the keystroke  
8 la $k1,stackTop # $k1 = address of stackTop variable  
9 lw $k1,0($k1) # $k1 = address of top of stack  
10 sb $k0,0($k1) # mem[stackTop] = newly-read keystroke  
11 addi $k1,$k1, 1 # $k1 = new top of stack  
12 la $k0,stackTop # $k0 = address of stackTop variable  
13 sw $k1,0($k0) # stackTop = $k1  
14 eret  
15  
16 main:  
17 la $t0,0x00FA0000 # $t0 = address of modem status  
18 lw $t1,0($t0) # $t1 = modem status  
19 bne $t1,$0,otherWork # if modem not ready, do other stuff  
20  
21 la $t0,stackTop # $t0 = address of stackTop  
22 lw $t1,0($t0) # $t1 = address of top of stack  
23 la $t2,stack # $t2 = address of bottom of stack  
24 beq $t2,$t1,otherWork # if stack top and bottom same, jump  
25  
26 addi $t1,$t1,-1 # $t1 = new top of stack  
27 lb $t3,0($t1) # $t3 = key at top of stack  
28 sw $t1,0($t0) # mem[stackTop] = new top of stack  
29 la $t0,0x00FA0004 # $t0 = address of modem output  
30 sb $t3,0($t0) # modem output = $t3  
31  
32 otherWork:  
33 # ...  
34 j main  



35 

Part a 
Circle one answer (true or false) for each statement. 
The keyboard input routine uses polling.  true  false 
The keyboard input routine uses memory-mapped I/O.  true  false 
The keyboard input routine uses interrupt-driven I/O.  true  false 
The modem output routine uses polling.  true  false 
The modem output routine uses memory-mapped I/O.  true  false 
The modem output routine uses interrupt-driven I/O.  true  false 

 
Part b 
This program has a bug. If a keyboard interrupt occurs during a certain part of the main 
routine, the program will malfunction. Fill in the following two blanks, and briefly 
explain your answer. 

The program will malfunction if the interrupt occurs after the execution of line 
______ but before the execution of line ______.  

Briefly explain your answer. 
 
 
Part c 
When the program malfunctions, it will (choose one) … 

• fail to transfer one of the keystrokes to the modem.  
• transfer one of the keystrokes to the modem twice.  
• get stuck in an infinite loop.  
• crash due to an invalid memory access.  

Briefly explain your answer. 
 
Part d 
True or false: Because the next key pressed is stored at address 0x00FF000A, the 
computer must have at least FF000A hex bytes of memory in order to operate correctly. 
Briefly explain your answer. 
 



Problem 11 (pipelining) 
Part a 
Consider the C function below. 

struct node { 
 int data; 
 struct node * next; 
}; 
/* Return true if p points to a node whose next field is the same as p. 
int is1nodeCircular (struct node * p) { 
 return (p != null && p == p->next); 
} 

Provide an assembly language implementation of is1nodeCircular that 
• returns the same result as the C version in all cases; and 
• uses as few pipeline cycles as possible. 

You may assume that forwarding, branch, and load delays are as described in Patterson 
and Hennessy section 6.1:  

• the ALU output in one cycle may be used in an ALU operation in the next cycle, 
• a register may be read and written in the same cycle, 
• the instruction following a branch or jump is always executed,  
• the result of a load cannot be used until the clock cycle after the load is in the 

MEM stage, and 
• branches are resolved in stage 2. 

Part b 
How many pipeline cycles does your solution use if is1nodeCircular returns true? Draw 
a pipeline diagram or draw arrows indicating dependencies between instructions to 
explain your answer. 


