Computer Science 70: Discrete Mathematics

The Berlekamp-Welch Algorithm

In this note we give a simple example of the Berlekamp-Welch algorithm with $n=3$ and $k=1$.

Suppose we want to send the packets " 1, ," " 3 ," and " 7 ." Then we interpolate to find the polynomial

$$
P(X)=X^{2}+X+1,
$$

which is the unique polynomial of degree 2 such that $P(0)=1, P(1)=3$, and $P(2)=7$.

Now we transmit the $n+2 k=5$ messages $P(0)=1, P(1)=3, P(2)=7$, $P(3)=13$, and $P(4)=21$. Suppose $P(1)$ is corrupted, so the receiver receives 0 instead of 3 in that packet.

Let $E(X)=X-e$ be the error-locator polynomial-we don't know what e is yet-and let $R(X)$ be the polynomial whose values at $0, \ldots, 4$ are precisely the values we received over the channel. Then clearly

$$
P(X) E(X)=R(X) E(X)
$$

for $X=0,1, \ldots, 4$ (if the corruption occured at position i, then $E(i)=0$, so equality trivially holds, and otherwise $P(i)=R(i)$). We don't know what P is (though we do know it is a degree 2 polynomial) and we don't know what E is either, but using the relationship above we can obtain a linear system whose solutions will be the coefficients of P and E.

Let

$$
Q(X)=a X^{3}+b X^{2}+c X+d=P(X) E(X),
$$

where a, b, c, d are unknown coefficients (which we will soon try to determine), so

$$
a X^{3}+b X^{2}+c X+d=R(X) E(X)=R(X)(X-e),
$$

which we can rewrite as

$$
a X^{3}+b X^{2}+c X+d+R(X) e=R(X) X .
$$

Now we substitute $X=0, X=1, \ldots, X=4$ to get five linear equations (recall that $R(i)$ is the value we received for the fifth packet):

$$
\begin{aligned}
d+e & =1 \\
a+b+c+d & =0 \\
8 a+4 b+2 c+d+7 c & =14 \\
27 a+9 b+3 c+d+13 e & =39 \\
64 a+16 b+4 c+d+21 e & =84 .
\end{aligned}
$$

We then solve this linear system for a, b, c, d, e, and this gives us the polynomials $Q(X)$ and $E(X)$. We can then find $P(X)$ by computing the quotient $Q(X) / E(X)$, and from P we can obviously recover the original (uncorrupted) values.

