CS 70 Discrete Mathematics for CS Spring 2004 Papadimitriou/Vazirani Lecture 13

Hypercubes

Recall that the set of all *n*-bit strings is denoted by $\{0,1\}^n$. The *n*-dimensional hypercube is a graph whose vertex set is $\{0,1\}^n$ (i.e. there are exactly 2^n vertices, each labeled with a distinct *n*-bit string), and with an edge between vertices *x* and *y* iff *x* and *y* differ in exactly one bit position. i.e. if $x = x_1x_2...x_n$ and $y = y_1y_2...y_n$, then there is an edge between *x* and *y* iff there is an *i* such that $\forall j \neq i, x_j = y_j$ and $x_i \neq y_i$.

There is another equivalent recursive definition of the hypercube:

The *n*-dimensional hypercube consists of two copies of the n-1-dimensional hypercube (the 0-subcube and the 1-subcube), and with edges between corresponding vertices in the two subcubes. i.e. there is an edge between vertex x in the 0-subcube (also denoted as vertex 0x) and vertex x in the 1-subcube.

Claim: The total number of edges in an *n*-dimensional hypercube is $n2^{n-1}$.

Proof: Each vertex has *n* edges incident to it, since there are exactly *n* bit positions that can be toggled to get an edge. Since each edge is counted twice, once from each endpoint, this yields a grand total of $n2^n/2$.

Alternative Proof: By the second definition, it follows that $E(n) = 2E(n-1) + 2^n$, and E(1) = 1. A straightforward induction shows that $E(n) = n2^{n-1}$.

We will prove that the *n*-dimensional hypercube is a very robust graph in the following sense: consider how many edges must be cut to separate a subset *S* of vertices from the remaining vertices V - S. Assume that *S* is the smaller piece; i.e. $|S| \le |V - S|$.

Theorem: $|E_{S,V-S}| \ge |S|$.

Proof: By induction on *n*. Base case n = 1 is trivial.

For the induction step, let S_0 be the vertices from the 0-subcube in S, and S_1 be the vertices in S from the 1-subcube.

Case 1: If $|S_0| \le 2^{n-1}/2$ and $|S_1| \le 2^{n-1}/2$ then applying the induction hypothesis to each of the subcubes shows that the number of edges between *S* and *V* – *S* even without taking into consideration edges that cross between the 0-subcube and the 1-subcube, already exceed $|S_0| + |S_1| = |S|$.

Case 2: Suppose $|S_0| > 2^{n-1}/2$. Then $|S_1| \le 2^{n-1}/2$. But now $|E_{S,V-S}| \ge 2^n - 1 \ge |S|$. This is because by the induction hypothesis, the number of edges in $E_{S,V-S}$ within the 0-subcube is at least $2^{n-1} - |S_0|$, and those within the 1-subcube is at least $|S_1|$. But now there must be at least $|S_0| - |S_1|$ edges in $E_{S,V-S}$ that cross between the two subcubes (since there are edges between every pair of corresponding vertices. This is a grand total of $2^{n-1} - |S_0| + |S_1| + |S_0| - |S_1| = 2^{n-1}$.