CS $70 \quad$ Discrete Mathematics for CS Spring 2004 Papadimitriou/Vazirani

Hypercubes

Recall that the set of all n-bit strings is denoted by $\{0,1\}^{n}$. The n-dimensional hypercube is a graph whose vertex set is $\{0,1\}^{n}$ (i.e. there are exactly 2^{n} vertices, each labeled with a distinct n-bit string), and with an edge between vertices x and y iff x and y differ in exactly one bit position. i.e. if $x=x_{1} x_{2} \ldots x_{n}$ and $y=y_{1} y_{2} \ldots y_{n}$, then there is an edge between x and y iff there is an i such that $\forall j \neq i, x_{j}=y_{j}$ and $x_{i} \neq y_{i}$.

There is another equivalent recursive definition of the hypercube:
The n-dimensional hypercube consists of two copies of the $n-1$-dimensional hypercube (the 0 -subcube and the 1 -subcube), and with edges between corresponding vertices in the two subcubes. i.e. there is an edge between vertex x in the 0 -subcube (also denoted as vertex $0 x$) and vertex x in the 1 -subcube.
Claim: The total number of edges in an n-dimensional hypercube is $n 2^{n-1}$.
Proof: Each vertex has n edges incident to it, since there are exactly n bit positions that can be toggled to get an edge. Since each edge is counted twice, once from each endpoint, this yields a grand total of $n 2^{n} / 2$.
Alternative Proof: By the second definition, it follows that $E(n)=2 E(n-1)+2^{n}$, and $E(1)=1$. A straightforward induction shows that $E(n)=n 2^{n-1}$.

We will prove that the n-dimensional hypercube is a very robust graph in the following sense: consider how many edges must be cut to separate a subset S of vertices from the remaining vertices $V-S$. Assume that S is the smaller piece; i.e. $|S| \leq|V-S|$.

Theorem: $\left|E_{S, V-S}\right| \geq|S|$.
Proof: By induction on n. Base case $n=1$ is trivial.
For the induction step, let S_{0} be the vertices from the 0 -subcube in S, and S_{1} be the vertices in S from the 1-subcube.

Case 1: If $\left|S_{0}\right| \leq 2^{n-1} / 2$ and $\left|S_{1}\right| \leq 2^{n-1} / 2$ then applying the induction hypothesis to each of the subcubes shows that the number of edges between S and $V-S$ even without taking into consideration edges that cross between the 0 -subcube and the 1-subcube, already exceed $\left|S_{0}\right|+\left|S_{1}\right|=|S|$.
Case 2: Suppose $\left|S_{0}\right|>2^{n-1} / 2$. Then $\left|S_{1}\right| \leq 2^{n-1} / 2$. But now $\left|E_{S, V-S}\right| \geq 2^{n}-1 \geq|S|$. This is because by the induction hypothesis, the number of edges in $E_{S, V-S}$ within the 0 -subcube is at least $2^{n-1}-\left|S_{0}\right|$, and those within the 1 -subcube is at least $\left|S_{1}\right|$. But now there must be at least $\left|S_{0}\right|-\mid S_{1}$ edges in $E_{S, V-S}$ that cross between the two subcubes (since there are edges betwen every pair of corresponding vertices. This is a grand total of $2^{n-1}-\left|S_{0}\right|+\left|S_{1}\right|+\left|S_{0}\right|-\left|S_{1}\right|=2^{n-1}$.

