CS 70 Discrete Mathematics for CS
Spring 2004 Papadimitriou/\/azirani Lecture 22

Variance

Question: At each time step, | flip a fair coin. If it comes up Heads, | walk one step to the right; if it comes
up Tails, | walk one step to the left. How far do | expect to have traveled from my starting poinnafter
steps?

Denoting a right-move by-1 and a left-move by-1, we can describe the probability space here as the set
of all words of lengttm over the alphabet+1}, each having equal probabili@;. Let the r.v.X denote our
position (relative to our starting point 0) aftemoves. Thus

X = X+ Xg 4+ X,

41 if ith toss is Heads;

whereX; =
% {—l otherwise.

Now obviously we have ) = 0. The easiest rigorous way to see this is to note tist)E= (1 x 1) + (5 x

(—1)) =0, so by linearity of expectation(K) = ' ; E(X;) = 0. Thus aften steps, my expected position

is 0! But of course this is not very informative, and is due to the fact that positive and negative deviations
from O cancel out.

What the above question is really asking is: What is the expected va|Xe, @ur distancefrom 0? Rather

than consider the r.yX|, which is a little awkward due to the absolute value operator, we will instead look
at the r.v.X2. Notice that this also has the effect of making all deviations from 0 positive, so it should also
give a good measure of the distance traveled. However, because isiguhreddistance, we will need to
take a square root at the end.

Let's calculate EX?):
E(X?) = E((X1+ X2+ -+ %n)?)

= E(ILy X+ 31 X X))

= YL EOG) + Ziy E(XX))
In the last line here, we used linearity of expectation. To proceed, we need to confitead EXX;)
(fori # j). Let's consider firsK?. SinceX; can take on only valuesl, clearlyX? = 1 always, so EX?) = 1.
What about EXXj)? SinceX; and X; areindependentit is the case that &X;) = E(X)E(X;) = 0.
Plugging these values into the above equation gives

E(X?)=(nx1)+0=n.

So we see that our expected squared distance from.00sie interpretation of this is that we might expect
to be a distance of aboytn away from 0 aften steps. However, we have to be careful here:caenot

1Two random variableX andY areindependenif the events X = a” and “Y = b” are independent for all pairs of valuash.
If X,Y are independent, then we haveX®Y) = E(X)E(Y); you'll be asked to prove this on one of your homeworks. Note that
E(XY) = E(X)E(Y) is falsefor general r.v’sX,Y; as an example just look a{E?) in the present discussion.
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simply argue that BX|) = \/E(X?) = \/n. (Why not?) We will see shortly (see Chebyshev’s Inequality
below) how to make precise deductions abditfrom knowledge of EX?).

For the moment, however, let's agree to vie\(\xE) as an intuitive measure of “spread” of the . In
fact, for a more general r.v. with expectatio®d = u, what we are really interested in i§& — u)?), the
expected squared distanftem the meanin our random walk example, we had= 0, so B (X — u)?) just
reduces to EX?).

Definition 22.1 (variance) For a r.v.X with expectation EX) = u, the variancef X is defined to be
var(X) = E((X — 1)2).

The square root/Var(X) is called the standard deviatiof X.

The point of the standard deviation is merely to “undo” the squaring in the variance. Thus the standarc
deviation is “on the same scale as” the r.v. itself. Since the variance and standard deviation differ just by
square, it really doesn’t matter which one we choose to work with as we can always compute one from the
other immediately. We shall usually use the variance. For the random walk example above, we have the
Var(X) = n, and the standard deviation Xfis \/n.

The following easy observation gives us a slightly different way to compute the variance that is simpler in
many cases.

Theorem 22.1 For ar.v. X with expectatiof(X) = u, we havevar(X) = E(X?) — u?.

Proof: From the definition of variance, we have
Var(X) = E((X — p)?) = E(X? = 2uX + u?) = E(X?) — 2uE(X) + p® = E(X?) — 2.

In the third step here, we used linearity of expectation.

Let's see some examples of variance calculations.

1. Fairdie. LetX be the score on the roll of a single fair die. Recall from an earlier lecture (h@t£%.
So we just need to computéX¥?), which is a routine calculcation:
1

91
6(12+22+32+42+52+62) =—.

E(X?

(X?) -
Thus from Theorem 22.1

91 49 35

Var(X) = E(X?) — (E(X)) 5 1°- 1

2. Biased coin. Let X the the number of Heads imtosses of a biased coin with Heads probabifity
(i.e., X has the binomial distribution with parameterg). We already know that &) = np. Writing
as usuak = X; + X + - - + Xn, where

)1 if ith toss is Head;
" 10 otherwise,

we have
E(X?) = E((Xq+ X2+ + %n)?)

= ST E(X?) + Yig EONX))
= (nx p)+(n(n—1) x p?)
=n’p?+np(1—p).
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In the third line here, we have used the facts théxE = p, and that X X;) = E(X)E(X;) = p?
(sinceX;, X; are independent). Note that there afa— 1) pairsi, j with i # j.

Finally, we get that VaiX) = E(X?) — (E(X))?> = np(1— p). As an example, for a fair coin the
expected number of Headsiirtosses ig, and the standard deviationi@.

Notice that in fact VafX) = 3; Var(X;), and the same was true in the random walk example. This is
no coincidence, and it depends on the fact that¢hare mutually independent. S$o the indepen-

dentcase we can compute variances of sums very easily. Note that this isn't the case, however, it
example 4.

3. Poisson distribution. Let X have the Poisson distribution with parameteiVe saw in the last lecture
that EX) = A. And we also have

Ex?) =S e _asier M a(Si-ner A i ver A\ Zaary
AP i P (-1 oo AT

[Check you follow each of these steps. In the last step, we have noted that the two sums are respe
tively E(X) andy;PiX =i] = 1]

Finally, we get VafX) = E(X?) — (E(X))? = A. So, for a Poisson random variable, the expectation
and variance are equal.

4. Number of fixed points. Let X be the number of fixed points in a random permutationiedms (i.e.,
the number of students in a class of sir&ho receive their own homework after shuffling). We saw
in an earlier lecture that(X) = 1 (regardless afi). To compute EX?), write X = Xg + Xp 4 - - - + X,

1 ifiis afixed point;

0 otherwise

Then as usual we have

whereX; =

EOX7) = 5 B¢+ > EXX) ®
i= iZ]

SinceX; is an indicator r.v., we have tha()gz) =PrX =1 = % In this case, however, we have to be
a bit more careful about(E;X;): note that wecannotclaim as before that this is equal toX)E(X;),
becauseX; andX; are not independent (why not?). But since bittandX; are indicators, we can
compute EX;X;) directly as follows:

E(XiXj) = PriX; = LA X; = 1] = Pr{bothi and | are fixed points=

n(n—1)

[Check that you understand the last step here.] Plugging this into equation (1) we get

E(X?) = (nx 3)+(n(n—1) x grtgy) =1+1=2

Thus VafX) = E(X?) — (E(X))? =2—1=1. l.e., the variance and the mean are both equal to 1.
Like the mean, the variance is also independemt dftuitively at least, this means that it is unlikely
that there will be more than a small number of fixed points even when the number ofitaagery
large.
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Che]oyshevjs Inequa]ity

We have seen that, intuitively, the variance (or, more correctly, the standard deviation) is a measure C
“spread”, or deviation from the mean. Our next goal is to make this intuition quantitatively precise. What
we can show is the following:

Theorem 22.2 [Chebyshev’s Inequality] For a random variable X with expectatidf(X) = u, and for
anya > 0,
Var(X)

ol

PHIX — | > o] <

Before proving Chebyshev’s inequality, let's pause to consider what it says. It tells us that the probability of
any given deviationgr, from the mean, either above it or below it (note the absolute value sign), is at most
Vaé(zx). As expected, this deviation probability will be small if the variance is small. An immediate corollary

of Chebyshev’s inequality is the following:

Corollary 22.3:  For a random variable X with expectatioB(X) = u, and standard deviatiomw =
\/Var(X),
1
PrlX — | = o) < 5.
Proof: Pluga = Bo into Chebyshev’s inequalityl

So, for example, we see that the probability of deviating from the mean by more than (say) two standart
deviations on either side is at m@t In this sense, the standard deviation is a good working definition of
the “width” or “spread” of a distribution.

We should now go back and prove Chebyshev’s inequality. The proof will make use of the following simpler
bound, which applies only toon-negativeandom variables (i.e., r.v.s which take only value®).

Theorem 22.4 [Markov’s Inequality] For a non-negativeandom variable X with expectatide(X) = u,
and anya > 0,
E(X)

PAX > a] <~
o

Proof: From the definition of expectation, we have

E(X) =YaaxPriX =4
> Sasqax PX =a]
> O‘ZaZa Pr[X = ]
= o PrX > al.

The crucial step here is the second line, where we have used the fa2t thkés on only non-negative
values. (Why is this step not valid otherwise?)

Now we can prove Chebyshev’s inequality quite easily.

Proof of Theorem 22.2 Define the r.vY = (X — u)?. Note that EY) = E((X — u)?) = Var(X). Also,
notice that the probability we are interested in|Rr- 1| > «, is exactly the same as[FPr> a?]. (Why?)
Moreover,Y is obviously hon-negative, so we can apply Markov’s inequality to it to get

E(Y)  Var(X)

2
Pr[Yza]<?f .
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This completes the proofl

Let's apply Chebyshev’s inequality to answer our question about the random walk at the beginning of the
lecture. Recall thaX is our position aften steps, and that (&) = 0, Var(X) = n. Corollary 22.3 says that,
foranyB > 0, Pf|X| > B/n] < B—lz Thus for example, if we take= 10° steps, the probability that we end

up more than 10000 steps away from our starting point is at q%gst

Here are a few more examples of applications of Chebyshev's inequality (you should check the algebra i
them):

1. Coin tossesLet X be the number of Heads mtosses of a fair coin. The probability thdtdeviates

from u = 3 by more than,/n is at most%l. The probability that it deviates by more thary/b is at
Most+-.
100

2. Poisson distribution. Let X be a Poisson r.v. with parametier The probability thaX deviates from
A by more than /2 is at most;.

3. Fixed points. Let X be the number of fixed points in a random permutatiom dEms; recall that
E(X) = Var(X) = 1. Thus the probability that more than (say) 10 students get their own homeworks
after shuffling is at mosﬁ), however largen is.
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