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Spring 2004 Papadimitriou/\/azirani Lecture 23

[.I.D. Random Variables

Estimating the bias of a coin

Question: We want to estimate the proportignof Democrats in the US population, by taking a small
random sample. How large does our sample have to be to guarantee that our estimate will be within (say
10% (in relative terms) of the true value with probability at least 0.95?

This is perhaps the most basic statistical estimation problem, and shows up everywhere. We will develo|
a simple solution that uses only Chebyshev’s inequality. More refined methods can be used to get sharp
results.

Let's denote the size of our sample hy(to be determined), and the number of Democrats in it by the
random variablé&s,. (The subscriph just reminds us that the r.v. depends on the size of the sample.) Then
our estimate will be the valu, = 1S,

Now as has often been the case, we will find it helpful to w8te= X1 + Xo + --- + X, whereX; =
1 if personi in sample is a Democrat;

0 otherwise.
Note that eactX; can be viewed as a coin toss, with Heads probabhilithough of course we do not know
the value ofp: this is what we're trying to estimate!). And the coin tosses are indepehdent.

What is the expectation of our estimate?
E(An) = E(3S) = 2E(X + X+ + %) = £ x (np) = p.

So for any value oh, our estimate will always have the correct expectapofSuch ar.v. is often called an
unbiased estimataof p.] Now presumably, as we increase our sample sjzaur estimate should get more
and more accurate. This will show up in the fact thatthdancedecreases with: i.e., asn increases, the

probability that we are far from the megwill get smaller.

To see this, we need to compute W&f). And sinceA, = %z{‘:m, we need to figure out how to compute
the variance of aumof random variables.

Theorem 23.1 For any random variable X and constant ¢, we have
Var(cX) = c?Var(X).
And forindependentandom variables XY, we have

Var(X +Y) = Var(X) + Var(Y).

IWe are assuming here that the sampling is done “with replacement”; i.e., we select each person in the sample from the entil
population, including those we have already picked. So there is a small chance that we will pick the same person twice.

[EnY

CS 70, Spring 2004, Lecture 23



Proof: From the definition of variance, we have
Var(cX) = E((cX — E(cX))?) = E((cX — cE(X))?) = E(c®(X — E(X))?) = c®Var(X).

The proof of the second claim is left as an exercise. Note that the second claimataeggeneral hold
unlessX andY are independentl

Using Theorem 23.1, we can now compute (¥Q):
n n n 2
Var(Ay) = Var(%_zlxi) = (%)ZVar(_ZlXi) - (%)?ZVar(m _ %

where we have writtew? for the variance of each of th§. So we see that the variancefyf decreases
linearly withn. This fact ensures that, as we take larger and larger samplersittess probability that we
deviate much from the expectatigrgets smaller and smaller.

Let's now use Chebyshev’s inequality to figure out how langeas to be to ensure a specified accuracy
in our estimate of the proportion of Democrads A natural way to measure this is for us to specify two
parametersg andd, both in the rang¢0, 1). The parameteg controls theerror we are prepared to tolerate
in our estimate, and controls theconfidenceve want to have in our estimate. A more precise version of
our original question is then the following:

Question: For the Democrat-estimation problem above, how large does the samphehsize to be in order
to ensure that
PilAn—p|=€ep/<6°?

In our original question, we hagl= 0.1 andd = 0.05. Notice thatt measures theelative error, i.e., the
error as aatio of the target valug. This seems like a more reasonable convention thaaltkeluteerror
(based on RJA, — p| > €]). This is because a given absolute error (s&d,1) might be quite small in the
context of measuring a large value lipe= 0.5, but very large when measuring a small value ke 0.05.
In contrast, the relative error treats all valuegpadqually.

Let's apply Chebyshev’s inequality to answer our more precise question above. Since we kidw,Var
this will be quite simple. From Chebyshev’s inequality, we have

Var(An) o2
P —p|> < = .
MA—p| > €p] < (ep)2 np2e2
To make this less than the desired vadyave need to set
o2 1

Now recall thaio? = Var(X) is the variance of a single sampfe So, sinceX; is a 0/1-valued r.v., we have
02 = p(1— p), and inequality (1) becomes

1-p 1
n> ppxg%. @)

Plugging ine = 0.1 andé = 0.05, we see that a sample sizenof 2000 1;pp is sufficient.

At this point you should be worried. Why? Because our formula for the sample size coptaind this

is precisely the quantity we are trying to estimate! But we can get around this as follows. We just pick a
value p’ that we know for sure is less thgm (For example, in the Democrats problem we could certainly
takep = %.) Then we usg’ in place ofp in equation (2). Sincg' is less tham, this will always lead us to

take at least enough samples (why?). In the Democrats examplep’wiﬂ%, this means we would take a
sample size oh = 2000x 2 = 4000.
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Estimating a general expectation

What if we wanted to estimate something a little more complex than the proportion of Democrats in the
population, such as the average wealth of people in the US? Then we could use exactly the same schel
as above, except that now the rX. is the wealth of theth person in our sample. Clearly(%) = u, the
average wealth (which is what we are trying to estimate). And our estimate will agm}nd@(% SiLi X, for

a suitably chosen sample sizeOnce again th&; are independent, and all have the same distribution: such

a collection of r.v.'s is usually calleshdependent and identically distributedr i.i.d. for short. As before

we have EA,) = u and VafA,) = %2 wheres? = Var(X) is the variance of th&;. (Recall that the only

facts we used about th¢ was that they were independent and had the same distribution.)

From equation (1), it is enough for the sample siZe satisfy

2
(o) 1

n>— X —=. 3

Heree and§ are the desired error and confidence respectively, as before. Now of course we don’t know the

other two quantitiesy. and o2, appearing in equation (3). In practice, we would use a lower bound on

and an upper bound as¥ (just as we used a lower bound prin the Democrats problem). Plugging these

bounds into equation (3) will ensure that our sample size is large enough.

For example, in the average wealth problem we could probably safelyutakebe at least (say) $20k
(probably more). However, the existence of people such as Bill Gates means that we would need to tak
a very high value for the varianag?. Indeed, if there is at least one individual with wealth $50 billion,
then assuming a relatively small valueiofneans that the variance must be at least a%@j%f =104,

(Check this.) However, this individual’s contribution to the mean is e}?&% = 200. There is really no

way around this problem with simple uniform sampling: the uneven distribution of wealth means that the
variance is inherently very large, and we will need a huge number of samples before we are likely to find
anybody who is immensely wealthy. But if we don’t include such people in our sample, then our estimate
will be way too low.

As a further example, suppose we are trying to estimate the average rate of emission from a radioactiv
source, and we are willing to assume that the emissions follow a Poisson distribution with some unknowr
parametetl — of course, thisk is precisely the expectation we are trying to estimate. Now in this case

we haveu = A and alsos? = A (see the previous lecture). %é = 1. Thus in this case a sample size of
n= ﬁ suffices. As an example, to estimate the mean number of chocolate chips in a cookie, with relative

error 0.1 and confidence 95%, and assuming that4 (i.e., the mean is at least 4), it would suffice to take
500 samples.

The Law Of Large Numbers

The estimation method we used in the previous two sections is based on a principle that we accept as p:
of everyday life: namely, the Law of Large Numbers. This asserts that, if we observe some random variabl
many times, and take the average of the observations, then this average will convesigg/le @aluewhich

is of course the expectation of the random variable. In other words, averaging tends to smoothe out any larg
and the more averaging we do the better the smoothing.

Theorem 23.2 [Law of Large Numbers] Let X, Xz, ..., X, be i.i.d. random variables with common expec-
tation u = E(X). Define A = %zi”:m. Then for anyx > 0, we have

Pr|An—u|>al—0 asn — oo,
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We will not prove this theorem here. Notice that it says that the probabiligngfdeviationa from the
mean, however small, tends to zero as the number of observationsur average tends to infinity. Thus

by takingn large enough, we can make the probability of any given deviation as small as we like. [Note,
however, that the Law of Large Numbers does not say anything dmywtarge nhas to be to achieve a
certain accuracy. For that, we need Chebyshev’s inequality or some other quantitative tool.]

Actually we can say something much stronger than the Law of Large Numbers: namely, the distribution
of the sample averagh,, for large enoughn, looks like abell-shaped curveentered about the mean

The width of this curve decreases withso it approaches a sharp spikeuat This fact is known as the
Central Limit Theorem

To say this precisely, we need to define the “bell-shaped curve.” This is the so-called Normal distribution
and it is the first (and only) non-discrete distribution we will meet in this course. For random variables that
take on continuous real values, it no longer makes sense to talk abgutRf. As an example, consider a

r.v. X that has the uniform distribution on the continuous intef®l]. Then for any single point& a<1,

we have PiX = a] = 0. However, clearly it is the case that, for examplé;Rt X < 2] = 1. So in place of

point probabilities X = a], we need a different notion of “distribution” for continuous random variables.

Definition 23.1 (density function) For a real-valued r.vX, a real-valued functiorf (x) is called a
(probability) density functiorfior X if

PriX <a = /a f(x)dx

Thus we can think of (x) as defining a curve, such that the area under the curve betweenxyeirtsind
x = b is precisely Pla < X < b]. Note that we must always hay€, f(x)dx= 1. (Why?) As an example,
for the uniform distribution orf0, 1] the density would be

0 forx<O;
f(x)=<¢1 for0<x<1;
0 forx>1.

[Check you agree with this. What would be the density for the uniform distributigr-@nl|?]
Expectations of continuous r.v.’s are computed in an analagous way to those for discrete r.v.’s. Thus

E(X) = / X f(x)dx
And also
Var(X) = E(X?) — (E(X))?, where EX?) = [® x2f(x)dx.
[You should check that, for the uniform distribution {fh1], the expectation i% and the variance i%.]
Now we are in a position to define the Normal distribution.

Definition 23.2 (Normal distribution): The Normal distribution with mean and variances? is the dis-
tribution with density function

1 2 2
f(X) = ——@e (X"H)7/20%
() ovV2an
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[The reason for the constant fact?\/rlzjn is that this is the value of the integral of the exponential function

e~(-1)*/o* 50 we have to normalize by this value to &}, f (x)dx= 1. If you enjoy calculus, you might
like to do the integrals to check that the expectatfiorf (x)dxis indeedu and that the variance is indeed.]

If you plot the above density functiof(x), you will see that it is a symmetrical bell-shaped curve centered
around the meap. Its height at the mean is about 0.4, and its width is determined by the vaxenes
follows: 50% of the mass is contained in the interval of widi7 either side of the mean, and 99.7% in

the interval of width & either side of the mean. (Note that, to get the correct scale, deviations are on the
order ofc rather tharo?.)

Now we are in a position to state the Central Limit Theorem. Because our treatment of continuous distri-
butions has been rather sketchy, we shall be content with a rather imprecise statement. This can be ma
completely rigorous without too much extra effort.

Theorem 23.3 [Central Limit Theorem] Let X, X,,..., X, be i.i.d. random variables with common
expectationu = E(X) and variances? = Var(X;) (both assumed to be ). Define A = %z{‘zlxi. Then

as n— oo, the distribution of A approaches the Normal distribution with mearand variance%z.

Note that the variance |$F (as we would expect) so the width of the bell-shaped curve decreases by a factor
of y/nasnincreases.

The Central Limit Theorem is actually a very striking fact. What it says is the following. If we take an
average oin observations oinyr.v. X, then the distribution of that average will be a bell-shaped curve
centered au = E(X). Thus all trace of the distribution of disappears as gets large: all distributions,

no matter how complex ook like the Normal distribution when they are averaged. The only effect of the
original distribution is through the variane#®, which determines the width of the curve for a given value
of n, and hence the rate at which the curve shrinks to a spike.

In class, we saw how the distribution&f behaves for increasing valuespfvhen thex; have the geometric
distribution with parameteg. As an exercise, try doing the same thing for several different Ky.'all of

which have the same mean but very different distributions. You should observe the appearance of the bel
shaped curve in all cases (with a width determined by the variance of the par{gular

23trictly speaking, we do need to assume that the mean and variaKcareffinite.
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