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I.I.D. Random Variables
Estimating the bias of a coin
Question: We want to estimate the proportionp of Democrats in the US population, by taking a small
random sample. How large does our sample have to be to guarantee that our estimate will be within (say)
10% (in relative terms) of the true value with probability at least 0.95?

This is perhaps the most basic statistical estimation problem, and shows up everywhere. We will develop
a simple solution that uses only Chebyshev’s inequality. More refined methods can be used to get sharper
results.

Let’s denote the size of our sample byn (to be determined), and the number of Democrats in it by the
random variableSn. (The subscriptn just reminds us that the r.v. depends on the size of the sample.) Then
our estimate will be the valueAn = 1

nSn.

Now as has often been the case, we will find it helpful to writeSn = X1 + X2 + · · ·+ Xn, whereXi ={
1 if personi in sample is a Democrat;

0 otherwise.
Note that eachXi can be viewed as a coin toss, with Heads probabilityp (though of course we do not know
the value ofp: this is what we’re trying to estimate!). And the coin tosses are independent.1

What is the expectation of our estimate?

E(An) = E(1
nSn) = 1

nE(X1 +X2 + · · ·+Xn) = 1
n× (np) = p.

So for any value ofn, our estimate will always have the correct expectationp. [Such a r.v. is often called an
unbiased estimatorof p.] Now presumably, as we increase our sample sizen, our estimate should get more
and more accurate. This will show up in the fact that thevariancedecreases withn: i.e., asn increases, the
probability that we are far from the meanp will get smaller.

To see this, we need to compute Var(An). And sinceAn = 1
n ∑n

i=1Xi , we need to figure out how to compute
the variance of asumof random variables.

Theorem 23.1: For any random variable X and constant c, we have

Var(cX) = c2Var(X).

And for independentrandom variables X,Y, we have

Var(X +Y) = Var(X)+Var(Y).

1We are assuming here that the sampling is done “with replacement”; i.e., we select each person in the sample from the entire
population, including those we have already picked. So there is a small chance that we will pick the same person twice.
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Proof: From the definition of variance, we have

Var(cX) = E((cX−E(cX))2) = E((cX−cE(X))2) = E(c2(X−E(X))2) = c2Var(X).

The proof of the second claim is left as an exercise. Note that the second claim doesnot in general hold
unlessX andY are independent.2

Using Theorem 23.1, we can now compute Var(An):

Var(An) = Var(1
n

n

∑
i=1

Xi) = (1
n)2Var(

n

∑
i=1

Xi) = (1
n)2

n

∑
i=1

Var(Xi) =
σ2

n
,

where we have writtenσ2 for the variance of each of theXi . So we see that the variance ofAn decreases
linearly withn. This fact ensures that, as we take larger and larger sample sizesn, the probability that we
deviate much from the expectationp gets smaller and smaller.

Let’s now use Chebyshev’s inequality to figure out how largen has to be to ensure a specified accuracy
in our estimate of the proportion of Democratsp. A natural way to measure this is for us to specify two
parameters,ε andδ , both in the range(0,1). The parameterε controls theerror we are prepared to tolerate
in our estimate, andδ controls theconfidencewe want to have in our estimate. A more precise version of
our original question is then the following:

Question: For the Democrat-estimation problem above, how large does the sample sizen have to be in order
to ensure that

Pr[|An− p| ≥ ε p]≤ δ ?

In our original question, we hadε = 0.1 andδ = 0.05. Notice thatε measures therelativeerror, i.e., the
error as aratio of the target valuep. This seems like a more reasonable convention than theabsoluteerror
(based on Pr[|An− p| ≥ ε]). This is because a given absolute error (say,±0.1) might be quite small in the
context of measuring a large value likep = 0.5, but very large when measuring a small value likep = 0.05.
In contrast, the relative error treats all values ofp equally.

Let’s apply Chebyshev’s inequality to answer our more precise question above. Since we know Var(An),
this will be quite simple. From Chebyshev’s inequality, we have

Pr[|An− p| ≥ ε p]≤ Var(An)
(ε p)2 =

σ2

np2ε2 .

To make this less than the desired valueδ , we need to set

n≥ σ2

p2 ×
1

ε2δ
. (1)

Now recall thatσ2 = Var(Xi) is the variance of a single sampleXi . So, sinceXi is a 0/1-valued r.v., we have
σ2 = p(1− p), and inequality (1) becomes

n≥ 1− p
p

× 1
ε2δ

. (2)

Plugging inε = 0.1 andδ = 0.05, we see that a sample size ofn = 2000× 1−p
p is sufficient.

At this point you should be worried. Why? Because our formula for the sample size containsp, and this
is precisely the quantity we are trying to estimate! But we can get around this as follows. We just pick a
value p′ that we know for sure is less thanp. (For example, in the Democrats problem we could certainly
takep′ = 1

3.) Then we usep′ in place ofp in equation (2). Sincep′ is less thanp, this will always lead us to
take at least enough samples (why?). In the Democrats example, withp′ = 1

3, this means we would take a
sample size ofn = 2000×2 = 4000.
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Estimating a general expectation
What if we wanted to estimate something a little more complex than the proportion of Democrats in the
population, such as the average wealth of people in the US? Then we could use exactly the same scheme
as above, except that now the r.v.Xi is the wealth of theith person in our sample. Clearly E(Xi) = µ, the
average wealth (which is what we are trying to estimate). And our estimate will again beAn = 1

n ∑n
i=1Xi , for

a suitably chosen sample sizen. Once again theXi are independent, and all have the same distribution: such
a collection of r.v.’s is usually calledindependent and identically distributed, or i.i.d. for short. As before
we have E(An) = µ and Var(An) = σ2

n , whereσ2 = Var(Xi) is the variance of theXi . (Recall that the only
facts we used about theXi was that they were independent and had the same distribution.)

From equation (1), it is enough for the sample sizen to satisfy

n≥ σ2

µ2 ×
1

ε2δ
. (3)

Hereε andδ are the desired error and confidence respectively, as before. Now of course we don’t know the
other two quantities,µ andσ2, appearing in equation (3). In practice, we would use a lower bound onµ

and an upper bound onσ2 (just as we used a lower bound onp in the Democrats problem). Plugging these
bounds into equation (3) will ensure that our sample size is large enough.

For example, in the average wealth problem we could probably safely takeµ to be at least (say) $20k
(probably more). However, the existence of people such as Bill Gates means that we would need to take
a very high value for the varianceσ2. Indeed, if there is at least one individual with wealth $50 billion,

then assuming a relatively small value ofµ means that the variance must be at least about(50×109)2

250×106 = 1013.

(Check this.) However, this individual’s contribution to the mean is only50×109

250×106 = 200. There is really no
way around this problem with simple uniform sampling: the uneven distribution of wealth means that the
variance is inherently very large, and we will need a huge number of samples before we are likely to find
anybody who is immensely wealthy. But if we don’t include such people in our sample, then our estimate
will be way too low.

As a further example, suppose we are trying to estimate the average rate of emission from a radioactive
source, and we are willing to assume that the emissions follow a Poisson distribution with some unknown
parameterλ — of course, thisλ is precisely the expectation we are trying to estimate. Now in this case
we haveµ = λ and alsoσ2 = λ (see the previous lecture). Soσ2

µ2 = 1
λ

. Thus in this case a sample size of

n = 1
λε2δ

suffices. As an example, to estimate the mean number of chocolate chips in a cookie, with relative
error 0.1 and confidence 95%, and assuming thatλ ≥ 4 (i.e., the mean is at least 4), it would suffice to take
500 samples.

The Law of Large Numbers
The estimation method we used in the previous two sections is based on a principle that we accept as part
of everyday life: namely, the Law of Large Numbers. This asserts that, if we observe some random variable
many times, and take the average of the observations, then this average will converge to asingle value, which
is of course the expectation of the random variable. In other words, averaging tends to smoothe out any large fluctuations,
and the more averaging we do the better the smoothing.

Theorem 23.2: [Law of Large Numbers] Let X1,X2, . . . ,Xn be i.i.d. random variables with common expec-
tation µ = E(Xi). Define An = 1

n ∑n
i=1Xi . Then for anyα > 0, we have

Pr[|An−µ| ≥ α]→ 0 asn→ ∞.
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We will not prove this theorem here. Notice that it says that the probability ofany deviationα from the
mean, however small, tends to zero as the number of observationsn in our average tends to infinity. Thus
by takingn large enough, we can make the probability of any given deviation as small as we like. [Note,
however, that the Law of Large Numbers does not say anything abouthow large nhas to be to achieve a
certain accuracy. For that, we need Chebyshev’s inequality or some other quantitative tool.]

Actually we can say something much stronger than the Law of Large Numbers: namely, the distribution
of the sample averageAn, for large enoughn, looks like abell-shaped curvecentered about the meanµ.
The width of this curve decreases withn, so it approaches a sharp spike atµ. This fact is known as the
Central Limit Theorem.

To say this precisely, we need to define the “bell-shaped curve.” This is the so-called Normal distribution,
and it is the first (and only) non-discrete distribution we will meet in this course. For random variables that
take on continuous real values, it no longer makes sense to talk about Pr[X = a]. As an example, consider a
r.v. X that has the uniform distribution on the continuous interval[0,1]. Then for any single point 0≤ a≤ 1,
we have Pr[X = a] = 0. However, clearly it is the case that, for example, Pr[1

4 ≤ X ≤ 3
4] = 1

2. So in place of
point probabilities Pr[X = a], we need a different notion of “distribution” for continuous random variables.

Definition 23.1 (density function): For a real-valued r.v.X, a real-valued functionf (x) is called a
(probability) density functionfor X if

Pr[X ≤ a] =
∫ a

−∞
f (x)dx.

Thus we can think off (x) as defining a curve, such that the area under the curve between pointsx = a and
x = b is precisely Pr[a≤ X ≤ b]. Note that we must always have

∫ ∞
−∞ f (x)dx= 1. (Why?) As an example,

for the uniform distribution on[0,1] the density would be

f (x) =


0 for x < 0;

1 for 0≤ x≤ 1;

0 for x > 1.

[Check you agree with this. What would be the density for the uniform distribution on[−1,1]?]

Expectations of continuous r.v.’s are computed in an analagous way to those for discrete r.v.’s. Thus

E(X) =
∫ ∞

−∞
x f(x)dx.

And also
Var(X) = E(X2)− (E(X))2, where E(X2) =

∫ ∞
−∞ x2 f (x)dx.

[You should check that, for the uniform distribution on[0,1], the expectation is12 and the variance is112.]

Now we are in a position to define the Normal distribution.

Definition 23.2 (Normal distribution) : The Normal distribution with meanµ and varianceσ2 is the dis-
tribution with density function

f (x) =
1

σ
√

2π
e−(x−µ)2/2σ2

.
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[The reason for the constant factor1
σ
√

2π
is that this is the value of the integral of the exponential function

e−(x−µ)2/σ2
. So we have to normalize by this value to get

∫ ∞
−∞ f (x)dx= 1. If you enjoy calculus, you might

like to do the integrals to check that the expectation
∫

x f(x)dx is indeedµ and that the variance is indeedσ2.]

If you plot the above density functionf (x), you will see that it is a symmetrical bell-shaped curve centered
around the meanµ. Its height at the mean is about 0.4, and its width is determined by the varianceσ2, as
follows: 50% of the mass is contained in the interval of width 0.67σ either side of the mean, and 99.7% in
the interval of width 3σ either side of the mean. (Note that, to get the correct scale, deviations are on the
order ofσ rather thanσ2.)

Now we are in a position to state the Central Limit Theorem. Because our treatment of continuous distri-
butions has been rather sketchy, we shall be content with a rather imprecise statement. This can be made
completely rigorous without too much extra effort.

Theorem 23.3: [Central Limit Theorem] Let X1,X2, . . . ,Xn be i.i.d. random variables with common
expectationµ = E(Xi) and varianceσ2 = Var(Xi) (both assumed to be< ∞). Define An = 1

n ∑n
i=1Xi . Then

as n→ ∞, the distribution of An approaches the Normal distribution with meanµ and varianceσ2

n .

Note that the variance isσ
2

n (as we would expect) so the width of the bell-shaped curve decreases by a factor
of
√

n asn increases.

The Central Limit Theorem is actually a very striking fact. What it says is the following. If we take an
average ofn observations ofany r.v. X, then the distribution of that average will be a bell-shaped curve
centered atµ = E(X). Thus all trace of the distribution ofX disappears asn gets large: all distributions,
no matter how complex,2 look like the Normal distribution when they are averaged. The only effect of the
original distribution is through the varianceσ2, which determines the width of the curve for a given value
of n, and hence the rate at which the curve shrinks to a spike.

In class, we saw how the distribution ofAn behaves for increasing values ofn, when theXi have the geometric
distribution with parameter16. As an exercise, try doing the same thing for several different r.v.’sXi , all of
which have the same mean but very different distributions. You should observe the appearance of the bell-
shaped curve in all cases (with a width determined by the variance of the particularXi).

2Strictly speaking, we do need to assume that the mean and variance ofX are finite.
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