
CS 70 Discrete Mathematics for CS
Spring 2004 Papadimitriou/Vazirani Lecture 24
The final two lectures on probability will cover some basic methods for answering questions about proba-
bility spaces. We will apply them to the problem of choosing safer squares in Minesweeper.

Cartesian-product sample spaces and independence
Many sample spaces are constructed by taking the Cartesian product of the domains of a set of random
variablesX={X1, . . . ,Xn}. This means that each sample point (or atomic event) corresponds to a complete
assignment of values to all the variables. Sample points, then, are very much like models in propositional
logic.

Given a Cartesian-product sample space, the corresponding probability space is defined by ajoint distri-
bution on the variables, which assigns a probability to each possible complete assignment of values. ForJOINT DISTRIBUTION

example, if the variables areHeads1 andHeads2, the Boolean outcomes of two independent unbiased coin
tosses, then the joint distribution is

P(Heads1= true∩Heads2= true) = 0.25 P(Heads1= true∩Heads2= f alse) = 0.25
P(Heads1= f alse∩Heads2= true) = 0.25 P(Heads1= f alse∩Heads2= f alse) = 0.25

In dealing with problems containing several variables, we will often want to write equations manipulating
entire joint distributions in one go, rather than having to deal with all the separate probabilities as above. We
will therefore introduce some useful notation. We will writeP(Xi) to represent the distribution of a variable
Xi ; you can think of this as a vector. For example,

P(Heads1) = 〈P(Heads1= true),P(Heads1= f alse)〉= 〈0.5,0.5〉

The joint distribution ofX1, . . . ,Xn is writtenP(X1, . . . ,Xn). For example, the joint distribution spelled out
above is denoted byP(Heads1,Heads2). Using distribution notation like this allows us to simplfy many
equations. For example, to say thatHeads1 andHeads2 are independent, we can write

P(Heads1,Heads2) = P(Heads1)P(Heads2)

which should be viewed as a shorthand for the four equations produced by instantiating the variables in
every possible way consistently across the equation.

P(Heads1= true∩Heads2= true) = P(Heads1= true)P(Heads2= true)
P(Heads1= true∩Heads2= f alse) = P(Heads1= true)P(Heads2= f alse)
P(Heads1= f alse∩Heads2= true) = P(Heads1= f alse)P(Heads2= true)
P(Heads1= f alse∩Heads2= f alse) = P(Heads1= f alse)P(Heads2= f alse)

Thus, you can think of the joint distributionP(X1, . . . ,Xn) as ann-dimensional table.

One further useful shorthand that is specific to Boolean variables: instead ofP(Heads1= true) andP(Heads1= f alse),
it is common to use the lower-case variable name with logical notation:P(heads1) andP(¬heads1). Then,
instead of taking intersections and unions of events (sets of sample points), we can use logical operators.
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Thus, P(Heads1= f alse∩Heads2= f alse) becomesP(¬heads1∧¬heads2). A comma is often used in
place of the∧ symbol.

Let’s look at another example:n balls inm bins. We can define the sample space as a Cartesian product of
the variablesBall1, . . . ,Balln, each of which has possible values〈1, . . . ,m〉. (Note: we write the domain as
an ordered tuple rather than a set because we want to be able to have elements of the distribution correspond
to elements of the domain.) Thus, the joint distributionP(Ball1, . . . ,Balln) is ann-dimensional table with
mn entries. Obviously, for all but tiny values ofm andn, we cannot hope to specify each entry individually.
As with coin-tossing, we may assume independence:

P(Ball1,Ball2, . . . ,Balln) = P(Ball1)P(Ball2) . . .P(Balln)

Lecture 17 assumed that each ball has an equal probability of going into any bin: for alli, P(Balli) =
〈1/m, . . . ,1/m〉. This assumption isseparatefrom the assumption of independence. We could have a dif-
ferent tossing mechanism, such as a pin table, that gave a highly nonuniform distribution across the bins;
we can even have a different tossing mechanism for each ball. As long as the balls don’t interfere with each
other, the independence equation will be valid.

Even with a different, nonuniform distribution for each ball, the productP(Ball1)P(Ball2) . . .P(Balln) re-
quires onlyO(mn) numbers to specify it, compared toO(mn) for the whole joint distribution without inde-
pendence. Therefore, when it holds, independence can give an exponential reduction in the complexity of
specifying (and, we shall see, reasoning with) a probability space. Unfortunately, independence is quite rare
in the real world.

Consider the random variablesWeather(with values〈sunny, rainy,cloudy,snow〉), Toothache, Cavity, and
Catch(all Boolean), whereCatch is true iff the dentist’s nasty steel probe catches in my tooth. Together,
these variables define a sample space with 4×2×2×2=32 entries. Can we use independence to simplify
the joint distribution? Certainly, it’s reasonable to say that the weather is indifferent to my dental problems,
and vice versa. So we have

P(Weather,Toothache,Cavity,Catch) = P(Weather)P(Toothache,Cavity,Catch)

That is, the 32-element joint distribution can befactoredinto a 4-element distributionP(Weather) and an
8-element distributionP(Toothache,Cavity,Catch). (Given that the distributions must all sum to 1, we’re
really using 3+7 numbers instead of 31 numbers in the full joint.)

So far, so good. But there are no independence relationships among the three dentistry variables. And if we
want a real dentistry model, we may need hundreds of variables, all of which are dependent. That is, the
dentistry part of the joint distribution may need 2hundredsof numbers to specify it! We will see that we can
do better.

Answering questions
A question, in the probabilistic context, requests the value of a conditional distribution, typically for a single
variableXi given evidencee (some specific values for evidence variablesE, whereE ⊆ X−{Xi}). That is,
we wantP(Xi |e). For example, we might want to knowP(Cavity|toothache).

Method 1: summing joint distribution entries
Given a full joint distributionP(X1, . . . ,Xn), compute the probabilityP(Xi |e) as follows. First, use the
definition to rewrite the conditional probability as the ratio of two event probabilities; then, express the
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toothache ¬toothache
catch ¬catch catch ¬catch

cavity 0.108 0.012 0.072 0.008
¬cavity 0.016 0.064 0.144 0.576

Table 1: A full joint distribution for the world consisting of the variablesToothache, Cavity, andCatch.

event probabilities as sums of probabilities of sample points—that is, probabilities of complete assignments
to all the variables. LettingY=X−E−{Xi} (i.e., the variables other than the evidence and the query
variable), we have

P(Xi |e) =
P(Xi ,e)

P(e)
=

∑yP(Xi ,e,y)
∑y,xi

P(xi ,e,y)

where the summations are taken over all possible values of the corresponding sets of random variables.
Notice that, from our definition ofY, the probabilities inside the summation are taken directly from the full
joint distribution.

Table 1 shows a full joint distribution for the sample space defined by the random variablesToothache,
Cavity, andCatch. Using the above formula, we can answer questions such as

P(Cavity|toothache) =
P(Cavity, toothache)

P(toothache)
= ∑catchP(Cavity, toothache,catch)

∑cavity,catchP(cavity, toothache,catch)

=
〈0.108+0.012,0.016+0.064〉
0.108+0.012+0.016+0.064

= 〈0.6,0.4〉

That is, the probability of having a cavity given a toothache is 0.6.

Another way to look at the computation is to see that thetoothacheevidence simply restricts the computation
to the left-hand side of Table 1.Within this restricted universe, which has just the two variablesCavityand
Catch, we just need to computeP(Cavity), which is 〈0.108+ 0.012,0.016+ 0.064〉 = 〈0.12,0.08〉. Of
course, this doesn’t add up to 1, but we can scale it by 1/(0.12+0.08) so that it does. We obtain the same
answer:〈0.6,0.4〉. The scaling factor 1/(0.12+0.08) is exactly 1/P(toothache), i.e., 1/P(e). This works
becauseP(e) is a constant with respect to the query variableCavity, i.e.,P(e) has the same value whether
Cavity is true or false. It is common, therefore, to write the term 1/P(e) as a scaling ornormalizationNORMALIZATION

constantα, which is chosen to make the final answer sum to 1:

P(Xi |e) = αP(Xi ,e) = α〈0.12,0.08〉= 〈0.6,0.4〉

This way of doing things greatly simplifies the equations that we write out.

Method 2: Bayes’ rule
Theorem 24.1: For any random variables A, B,

P(A|B) =
P(B|A)P(A)

P(B)
= αP(B|A)P(A)

Proof: This is a trivial application (both ways) of the chain rule:

P(A,B) = P(A|B)P(B) = P(B|A)P(A)
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followed by division byP(B). 2

Why is such a trivial theorem so important? Its main use is to reverse the direction of conditioning. Typically,
one wants to computeP(Cause|E f f ect), but one’s knowledge of the domain is more commonly available
in the causal direction:P(E f f ect|Cause). Bayes’ rule provides the needed transformation.

The formP(A|B) = αP(B|A)P(A) also illustrates the idea ofBayesian updating. P(A) is theprior distri-BAYESIAN UPDATING
PRIOR

bution onA. To accommodate evidence aboutB, this is multiplied by thelikelihood of that evidence basedLIKELIHOOD

on A, i.e.,P(B|A). After normalization, we obtain theposterior probabilityP(A|B). The process can thenPOSTERIOR

be repeated. (But see below for what this repetition really means.)

Consider the disease-testing problem in Lecture 18. The information defining the problem is as follows:

P(Test positive|disease) = 〈0.9,0.1〉
P(Test positive|¬disease) = 〈0.2,0.8〉
P(Disease) = 〈0.05,0.95〉

Given that one has tested positive, the probability of disease can be computed using Bayes’ rule as follows:

P(Disease|test positive) = αP(test positive|Disease)P(Disease)
= α〈0.9,0.2〉〈0.05,0.95〉
= α〈0.045,0.19〉 ≈ 〈0.19,0.81〉

Conditional independence
Suppose one has a toothache and the dentist’s nasty steel probe catches in one’s tooth. Using Bayes’ rule,
we have

P(Cavity|toothache,catch) = αP(toothache,catch|Cavity)P(Cavity)

To complete this calculation, we need to knowP(Cavity)—simple enough, in effect just one number—and
P(toothache,catch|Cavity). The latter term is one representative of a table that is 2×2×2, i.e., just as big
as the joint distribution itself. And as the set of possible symptoms gets larger, this becomes exponentially
larger and hence impractical.

One is tempted (justifiably, it turns out) to write

P(toothache,catch|Cavity) = P(toothache|Cavity)P(catch|Cavity)

and hence obtain

P(Cavity|toothache,catch) = αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

This factorization assumes thatToothacheandCatchareconditionally independentgivenCavity.CONDITIONALLY
INDEPENDENT

Definition 24.1 (Conditional Independence): VariablesX andY are conditionally independent given
variableZ iff

P(X,Y|Z) = P(X|Z)P(Y|Z)

Equivalent definitions are:

P(X|Y,Z) = P(X|Z) and P(Y|X,Z) = P(Y|Z)
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This assumption is reasonablebecause of our knowledge of the variables in question and their relationships.
(In the same way, we modeln coin tosses as absolutely independent because we believe the coins are tossed
so as not to interfere with each other.)Given knowledge of the existence (or not) of the cavity, the probability
that the dentist’s probe catches in one’s tooth is independent of whether or not I happen to have a toothache.
Note that this independence holds only given information about the cavity; if we don’t know about the
cavity, thenToothacheandCatchare clearly dependent, since each suggests a cavity that, in turn, makes the
other more likely.

Conditional independence occurs very frequently in the real world, because causal processes are “local.”
This usually allows the joint distribution on a set of variables to be factored into a set of small conditional
distributions. We can see this by applying the chain rule:

P(Toothache,Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity) (Chain Rule)

= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity) (conditional independence)

If we count the numbers carefully, taking into account all the sum-to-1 constraints, we see that the joint (7
numbers) is reduced to 2+2+1=5 numbers through the conditional independence assumption. This may
not sound like much; but in realistic applications, we often see reductions from 21000numbers down to a few
thousand.

Application: Bayesian updating with Gaussian distributions
This section looks at what happens if we have a Gaussian prior distribution describing our uncertainty about
some quantityX, and then we obtain several measurementsy1, . . .yn of that quantity, each of which has
a Gaussian error associated with it. (For example, we might measure the temperature using 5 different
thermometers, or we might count votes 5 times using different teams of counters.) We assume that the
measurements areconditionally independent given the true value ofX; this is entirely reasonable if the
measurement processes are independent. Note that the measurements are notabsolutelyindependent—
indeed, they are highly correlated because they are all measurements of the same thing.

The prior distribution associated withX is a Gaussian with meanµ0 and varianceσ2
0 :

f (x) = α exp(−(x−µ0)2/2σ
2
0)

If each measurement has Gaussian error, thenif the true value of X is x, the distribution forYi is a Gaussian
centered onx:

f (yi |x) = α exp(−(yi −x)2/2σ
2
e)

whereσ2
y is the variance of the error distribution.

Now we are interested in computing the posterior density ofX. We want the true value given the measure-
ments, but our model of the measurement process describes the probability of a measurement given the true
value. So we need to apply Bayes’ rule:

f (x|y1, . . .yn) = α
′ f (y1, . . .yn|x) f (x) (Bayes’ rule)

= α
′

n

∏
i=1

f (yi |x) f (x) (conditional independence)
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Thus, we start with the prior distribution and multiply it by successive distributions for each measurement.

Let us look at the first step of this process. We have

f (x|y1) = α
′ f (y1|x) f (x)

= α
′′exp(−(y1−x)2/2σ

2
y )exp(−(x−µ0)2/2σ

2
0)

= α
′′exp−

(
σ2

0(y1−x)2 +σ2
y (x−µ0)2

2σ2
y σ2

0

)

= α
′′exp−

x2−2
σ2

0 y1+σ2
y µ0

σ2
y +σ2

0
x+ σ2

0 y2
1+σ2

y µ2
0

σ2
y +σ2

0

2σ2
y σ2

0/(σ2
y +σ2

0)


= α

′′′exp−

 (x− σ2
0 y1+σ2

y µ0

σ2
y +σ2

0
)2

2σ2
y σ2

0/(σ2
y +σ2

0)


That is, after Bayesian updating, the posterior densityf (x|y1) is a Gaussian with mean and variance given
by

µ1 = (σ2
0y1 +σ

2
y µ0)/(σ2

y +σ
2
0)

σ
2
1 = σ

2
y σ

2
0/(σ2

y +σ
2
0)

The maths looks complicated but actually what’s going on is very simple. We are adding two exponents,
each of which is a quadratic inx, so we get a quadratic inx. We “complete the square”, writingax2 +bx+c
as a(x− b/2a)2 plus some constants which disappear into the new normalizing constantα ′′′. The new
variance is extracted from the coefficient ofx2 and the new mean from the coefficient ofx. In short, the
product of two Gaussians is a Gaussian.

The process of updating the mean and variance is easier to understand if we write it using theprecisionτ,
which is the inverse of the variance. The update equations become

µ1 = (τyy1 + τ0µ0)/(τy + τ0)
τ1 = τy + τ0

That is, the new mean is a precision-weighted average of the old mean and the new measurement; and the
new precision is the sum of the old precision and the measurement precision.

These results are quite intuitive. The update for the mean reflects the fact that the new mean always lies
between the old mean and the measured value, but will move closer to the measured value as the measure-
ment becomes more accurate. Conversely, if we are already very confident in the value (high precision) then
the new measurement makes little difference. The precision always increases, representing the fact that new
information should increase certainty.

After n measurements, an easy induction proof shows us that

µn = (τy

n

∑
i=1

yi + τ0µ0)/(nτy + τ0)

τn = nτy + τ0
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Thus, asn→ ∞, µn tends to the mean value of the observations andσn tends toσy/
√

n. For the special case
of samples drawn from a Gaussian distribution, then, we obtain exactly the result suggested by the Central
Limit Theorem.
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