
CS 70 Discrete Mathematics for CS
Spring 2004 Papadimitriou/Vazirani Lecture 25

Minesweeper
Our final application of probability is to Minesweeper. We begin by discussing how to play the game
optimally; this is probably infeasible, but a good approximation is to probe the safest squares. This motivates
the computation of the probability that each square contains a mine, which is a nice application of what we
have learned about both logic and probability.

Optimal play in Minesweeper
We have seen many cases in Minesweeper where a purely logical analysis is insufficient, because there are
situations in which no move is guaranteed safe. Therefore, no Minesweeper program can win 100% of the
time. We have measured performance by the proportion of wins as a function of the initial density of mines.
Can we find the algorithm that plays better than all others, i.e., has a higher probability of winning?

The first step in the argument is to move fromalgorithms, of which there are infinitely many, tostrategies,
of which there are only finitely many. Basically, a strategy says what to do at every point in the game. Notice
that a strategy is specific to a particular number of minesM and total number of squaresN (as well as the
shape of the board):

Definition 25.1 (Strategy): A strategy for a Minesweeper game is a tree; each node is labelled with a
square to be probed and each branch is labelled with the number of mines discovered to be adjacent to
that node. Every node has 9 children with branches labelled 0, . . . ,8; no node label repeats the label of an
ancestor; and the tree is complete withN−M levels.

Figure 1 shows an example. Even for fixedN andM, there are a lot of possible strategies:

N−M−1

∏
i=0

(N− i)9i

(For N=6, M=3, this is 68507889249886074290797726533575766546371837952000000000.) Still, the
number is finite. It is easy to see that every (terminating) algorithm for Minesweeper (given fixedN, M, and

Figure 1: First two levels of a Minesweeper strategy.

CS 70, Spring 2004, Lecture 25 1

board shape) corresponds to exactly one strategy. Furthermore, with every strategy there is an associated
probability of winning. Indeed, it is possible to calculate this exactly, but it is probably easier to measure it
using repeated trials.

Definition 25.2 (Optimality): A strategy for Minesweeper isoptimal if its probability of winning is atOPTIMAL

least as high as that of all other strategies.

Clearly, there is an optimal strategy for any givenN, M, and board shape. Moreover, we can construct an
optimal method of playin general(for arbitraryN, M, and board shape): enumerate every strategy for that
configuration and play the optimal one. The performance profile of this algorithm will dominate that of any
other algorithm.

(Note that the existence of an optimal algorithm rests on the finite number of possible strategies. There are
infinitely many algorithms, and it is easy to imagine problems for which any given algorithm can always be
improved (e.g., by spending a little bit more computation time) so that no optimal algorithm exists.)

Unfortunately, it is probably the case that nopractical optimal algorithm exists. Instead, we will try a
simpler approach: pick a safe square when one is known, otherwise pick the safest square as judged by the
probability that it contains a mine.

The probability space
The first step is to identify the set of random variables we need:

• As in the propositional logic case, we want one Boolean variableXi j which is true iff square(i, j)
actually contains a mine. UsingN to refer to the total number of squares, we can also label these
variables asX1, . . . ,XN, which will come in handy.

• We’ll also have variablesDi j corresponding to the display contentsfor those k squares that have
been probed or marked as mines. We can also label these variablesD1, . . . ,Dk for simplicity. The
domain for each of these variables is〈m,0,1,2, . . . ,8〉. We’ll call these variables theNumbers, and
the correspondingXi j variables will be calledKnown. (Note thatNumbersincludes marked mines;
we assume that only logically guaranteed mines are marked.)

Finally, we’ll use andM to refer to the total number of mines. (BothN andM are constants.)

As an example, consider the following display:

MINES LEFT: 3
3
2 m
1 2 2

1 2 3 4

HereN is 12,M is 4, (1,1), (3,1), and (1,2) areKnown.

Now we must write down our probability space, i.e., the joint distribution over all the variables. It turns out
to be easiest to do this in two parts, using the chain rule:

P(X1, . . . ,XN,D1, . . . ,Dk) = P(D1, . . . ,Dk|X1, . . . ,XN)P(X1, . . . ,XN)

Why this way? Because (1) the prior distribution of mines,P(X1, . . . ,XN), is easy to compute because mines
are scattered uniformly at random, and (2) the display variables are determined by the underlying mines, so
the conditional distributionP(D1, . . . ,Dk|X1, . . . ,XN) is also relatively easy to describe.

CS 70, Spring 2004, Lecture 25 2

First, the priorP(X1, . . . ,XN). Remember that the first square selected is always safe. Without loss of
generality, let us call this squareX1; we know thatX1= f alse. For the remainingN−1 squares,M mines
are scattered at random. There are

(
N−1M

)
ways to do this and each is equally likely, so we have

P(x2, . . . ,xN) =

{ (1/

N−1M if #(x2,...,xN)=M

)
0 otherwise

where #(x2, . . . ,xN) denotes the number of “trues” in the sample pointx2, . . . ,xN. To check, we can calculate
P(Xi), the prior initial probability of a squareXi (i 6= 1) containing a mine: this is given by

((
N−2M−1

)
/

N−1M=M/(N−1)

)
which is in accord with our expectations.

(From the assumption of uniform scattering and the fact thatP(Xi) for all i 6= 1, one is tempted to write the
joint distribution as

P(X2, . . . ,XN) = P(X2)P(X3) . . .P(Xn) WRONG

But independence does not hold, because the total number of mines is fixed! For example, if the firstM
squares all get mines, then the next square has probability 0 of getting a mine.)

Turning to the display variables, we know they are determined precisely according to the rules of Minesweeper,
given the actual contents of all the squares. I.e., for all combinations of valuesd1, . . . ,dk,x1, . . . ,xN,

P(d1, . . . ,dk|x1, . . . ,xN) =
{

1 if d1, . . . ,dk correctly displaysx1, . . . ,xN

0 otherwise

Finding safer squares
Now we need to compute, for each unknown square(i, j), the quantityP(Xi j |known,numbers). We develop
a simple and computable expression for this probability in a series of steps.

First, we need to massage the expression into a form containing the terms that we know about—the prior
over all theX-variables, and the conditional probability of the display variables given those variables. The
expressionP(Xi j |known,numbers) is missing the unknown variables other thanXi j ; call theseUnknown. For
example, in the 4×3 display above,Xi j might beX2,1 and there are 8 squares inUnknown. We introduce
them by summing over them (the standard summation over constituent sample points for an event):

P(Xi j |e) = P(Xi j |known,numbers) = ∑
unknown

P(Xi j ,unknown|known,numbers)

For example, with 8 unknown squares, this is a sum of 28 = 256 terms. We’d like to have an expression with
numbersconditioned onX-variables, so we apply Bayes’ rule:

P(Xi j |e) = α ∑
unknown

P(numbers|known,Xi j ,unknown)P(Xi j ,unknown|known)

= α ∑
unknown

P(numbers|known,Xi j ,unknown)P(Xi j ,unknown,known)/P(known)

= α
′ ∑
unknown

P(numbers|known,Xi j ,unknown)P(Xi j ,unknown,known)

CS 70, Spring 2004, Lecture 25 3

So far, so good; the variablesknown,Xi j ,unknownconstitute all theX-variables, so we have terms here that
we already defined in our probability space given earlier. The only problem is that we have too many of
them! The number of unknown variables could be as large asN, so the summation is overO(2N) cases.

The solution to this problem is to identify a subset of these variables that affect the display and to simplify
the expressions using conditional independence so that the summation covers only this subset.

Let Fringe denote those unknown variables (not includingXi j) that are adjacent to numbered squares. For
example, ifXi j refers to the square (2,1), thenFringe contains (2,2), (3,2), (4,2), (4,1). The idea is that
the Numbersare completely determined just byKnown, Fringe, andXi j (if it is adjacent to a number).
Given these, theNumbersare conditionally independent of the remaining unknown variables, which we call
Background. In our example,Backgroundconsists of the top row: (1,3), (2,3), (3,3), (4,3).

There are actually two slightly different cases to deal with, depending on whetherXi j is adjacent to a number.

Case 1: Xi j is adjacent to a number.

P(Xi j |e)
= α

′ ∑
f ringe,background

P(numbers|known, f ringe,background,Xi j)P(known, f ringe,background,Xi j)

replacingunknownby f ringe,background

= α
′ ∑

f ringe,background

P(numbers|known, f ringe,Xi j)P(known, f ringe,background,Xi j)

by conditional independence

= α
′ ∑
f ringe

P(numbers|known, f ringe,Xi j) ∑
background

P(known, f ringe,background,Xi j)

because the first term doesn’t depend onbackground

Now, in this last expression, the termP(numbers|known, f ringe,Xi j) is 0 unless, to use our logical termi-
nology, the assignment denoted byf ringe,Xi j is amodelof the CNF expression implied by the evidence. If
it is a model, then the probability is 1. So the summation overf ringe reduces to a simpler summation over
the models of the evidence:

P(Xi j |e) = α
′ ∑

{ f ringe: 〈 f ringe,Xi j 〉∈models(e)}
∑

background

P(known, f ringe,background,Xi j)

The sum over the background variables, which may still have a huge number of cases, can be simplified
because the prior probability termP(known, f ringe,background,Xi j) is

(1/
N−1M

)
or 0, depending on whether

#(known, f ringe,background,Xi j) = M. Therefore, we just have to count the number of cases where the
background has the right number of mines. This is given by

(
BM−L

)
, whereB is the size of the background

andL is #(known, f ringe,Xi j), i.e., the number of mines not in the background. Finally, we obtain

P(Xi j |e) =
(

α ′∑{ f ringe: 〈 f ringe,Xi j 〉∈models(e)}
(

BM−L

)
/

N−1M

)
=

(
α ′′∑{ f ringe: 〈 f ringe,Xi j 〉∈models(e)}

BM−L

)
(1)

which is simple to compute provided we can enumerate the models for the fringe variables. This costs
O(2|Fringe|), roughly the same as the logical algorithm. Notice that the term

(1/
N−1M

)
disappears into the

normalizing constant because it does not depend onf ringe.

CS 70, Spring 2004, Lecture 25 4

Now we apply this formula to computeP(X2,1|e) in our example. First, let’s enumerate the models. When
X2,1= true, these are the fringe models:

3 ? ? ? ?
2 m m
1 2 m 2

1 2 3 4

3 ? ? ? ?
2 m m
1 2 m 2

1 2 3 4

3 ? ? ? ?
2 m
1 2 m 2 m

1 2 3 4

WhenX2,1= f alse, these are the fringe models:

3 ? ? ? ?
2 m m m
1 2 2

1 2 3 4

3 ? ? ? ?
2 m m m
1 2 2

1 2 3 4

3 ? ? ? ?
2 m m
1 2 2 m

1 2 3 4

For each of these models,
(

BM−L=(41)=4

)
, so we have

P(X2,1|e) = α
′′〈3×4, 3×4〉 = 〈1/2,1/2〉

(This is in accord with the “intuitive” argument that says there is exactly one mine in (2,1) or (2,2), and it is
equally likely to be in either.) We can show similarly thatP(X3,2|e) = 〈1/3,2/3〉 (i.e., 1/3 probability of a
mine).

Case 2: Xi j is not adjacent to a number.
The derivation is very similar, butXi j acts like a background variable rather than a fringe variable:

P(Xi j |e) = α ∑
f ringe,background

P(numbers|known, f ringe,background,Xi j)P(known, f ringe,background,Xi j)

= α ∑
f ringe,background

P(numbers|known, f ringe)P(known, f ringe,background,Xi j)

= α ∑
f ringe

P(numbers|known, f ringe) ∑
background

P(known, f ringe,background,Xi j)

Now the fringe variables constitute the entire model:

P(Xi j |e) = α ∑
f ringe∈models(e)

∑
background

P(known, f ringe,background,Xi j)

and the final expression is very similar.

(P(Xi j |e) = α
′ ∑

f ringe∈models(e)
BM−L

)
(2)

It is clear that this expression is the same for allXi j that are not adjacent to a number, so we need only do
this once to get the probability of safety for background squares. (Each fringe square must be evaluated
separately.)1

Let us calculate, say,P(X1,4|e) in our example. We haveB=3 andM=4.
WhenX1,4= true, L=4, so

(
BM−L=(30)=1

)
.

1Note: the meaning ofFringe andBackgrounddiffers in Case 1 and Case 2. In the first,Fringe includes all number-adjacent
variables exceptXi j , while Backgroundincludes all other variables. In the second,Fringe includes all number-adjacent variables,
while Backgroundincludes all other variables exceptXi j . This makes for somewhat simpler mathematical expressions. The code
in minep.scm uses the opposite convention: the fringe is all number-adjacent variables, and the background is all other variables.

CS 70, Spring 2004, Lecture 25 5

Total mines: 6 To find: 6

- - - - 0.298 0.298 0.298 0.737
- 2 - - 0.298 --2-- 0.298 0.737
- - - - 0.298 0.105 0.105 0.895
- - 2 1 0.737 0.895 --2-- --1--

Figure 2: Example of a situation in which probabilistic inference distinguishes between very safe squares—
(2,2) and (3,2)—and very unsafe squares—(2,1) and (4.2). Essentially, sharing a mine between the two “2”
numbers would mean forcing 3 mines into the three background squares (1,1), (4,3), and (4,4), which can
happen in only one way and hence is unlikely.

WhenX1,4= f alse, L=3, so
(

BM−L=(31)=3

)
.

There are 6 fringe models, so

P(X1,4|e) = α
′〈6×1, 6×3〉 = 〈1/4,3/4〉

That is, each background square has a 1/4 probability of being a mine. So the safest move is in a background
square.

We can check the theorem we proved in the linearity-of-expectation homework: that the sum of probabilities
equals the number of mines left. The sum of probabilities is

1
2

+
1
2

+
1
3

+
1
3

+
1
3

+
1
4

+
1
4

+
1
4

+
1
4

= 3

We can also check the work by calculating the probability of a mine after the first move (before finding
out the number in the square). In that case, all the remaining squares besidesXi j and the initial square are
background squares (B=N−2), andL=1 whenXi j = true and 0 whenXi j = f alse. There are no variables
in the fringe, so there is exactly one (empty) model. Hence

P(Xi j |e) =
(

α〈
(

N−2M−1

)
,

N−2M〉

)
=

(
N−2M−1

)(
N−2M−1

)
+

(
N−2M

)
=

(
N−2M−1

)(
N−1M

) by Pascal’s identity,

(
n+1k

)
=

(
nk−1

)
+

(
nk

)
=

(N−2)!
(M−1)!(N−M−1)!

M!(N−M−1)!
(N−1)!

=
M

N−1

which agrees with our earlier calculation.

Figure 2 shows a case where probability really helps in deciding what to do. Figure 3 shows the performance
of all four methods for minesweeper. Each improvement in the algorithm gives an improvement in play
across all mine densities, but improvement is most pronounced for the more difficult cases.

CS 70, Spring 2004, Lecture 25 6

Figure 3: Performance of the brain-dead, Mark II, Mark III, and probailistic algorithms on a 4×4 board,
averaged over 100 trials.

CS 70, Spring 2004, Lecture 25 7

