
CS 70 Discrete Mathematics for CS
Spring 2004 Papadimitriou/Vazirani Lecture 26

Lecture 26: Randomized Fingerprinting
Comparing Databases
Alice and Bob are far apart, say, in Australia and Brazil respectively. Each has a copy of a database (ofn
bits),a andb respectively. They want to check that their copies are the same, i.e., thata = b. However, they
have only a (costly) telephone line between them over which they can communicate.

Obviously Alice could send her entire databasea to Bob, and he could compare then it tob. But this requires
transmission ofn bits, which for realistic values ofn is costly and error-prone. Instead, suppose Alice first
computes a much smaller fingerprintF(a) and sends this to Bob. He then computesF(b) and compares it
with F(a). If the fingerprints are equal, he announces that the copies are identical.

What kind of properties do we want the fingerprint function to have? Clearly,F(x) should be much shorter
than the length ofx. Further, we would likeF(a) andF(b) to be the same ifa andb are identical, and
different otherwise. In the following discussion, we will try to construct one such function so that ifa 6= b,
F(a) 6= F(b) with constant probability.

Let’s view a copy of the database as ann-bit binary number, i.e.,a = ∑n−1
i=0 ai2i andb = ∑n−1

i=0 bi2i . Now
defineF(a) = a mod p, wherep is a prime number chosen at random from the range{1, . . . ,k}, for some
suitablek. Remember that we want Pr[F(a) = F(b)] to be small ifa 6= b.

Supposea 6= b. When isF(a) = F(b)? Well, for this to happen, we need thata mod p = b mod p, i.e., that
p dividesd = a−b 6= 0. Butd is an (at most)n-bit number, so the size ofd is less than 2n. This means that
at mostn different primes can divided.

Why is this so? Recall that we can writed as the product of its prime factorsp1 · p2 · . . . · pt . Since each of
these primes must be at least 2, andd is at most 2n, it must be the case thatt ≤ n, and so at mostn primes
divided.

So: as long as we makek large enough so that the number of primes in the range{1, . . . ,k} is much larger
thann we will be in good shape. To ensure this, we use thePrime Number Theoremfrom Lecture 10.

Theorem 26.1: [Prime Number Theorem] Letπ(k) denote the number of primes less than k. Thenπ(k)∼ k
lnk

as k→ ∞.

Now all we need to do is setk = cnln(cn) for any c we like. By the Prime Number Theorem, with this
choice ofk,

Pr[F(a) = F(b)|a 6= b]≤ n
π(k)

∼ 1
c
.

So, if we takec = 10, say, then we will achieve an error probability less than 1/10.

Finally, note that Alice only needs to send to Bob the numbersa mod p and p (so that Bob knows which
fingerprint to compute), both of which are at mostk. So the number of bits sent by Alice is at most 2 log2k =
O(logn).

CS 70, Spring 2004, Lecture 26 1

Reducing the error: Note that the protocol above is guaranteed to work 90% of the time. But this is not
very good for crucial applications – we would like our error probability to be much smaller. One way to do
this is toperform independent trials. I.e., we repeat the protocol many times independently of each other
and answer that the databases are the same if and only ifF(a) = F(b) in all the runs of the protocol.

What is the error probability if we repeatt times? Well, we make an error whena 6= b andF(a) = F(b) on
all the runs. But the chance of this happening is at most(1/c)t . If c = 10, and we maket = 100, the chance
of error is at most(1/10)100, which is incredibly small.

We did not explain how Alice selects a random primep ∈ {1, . . . ,k}. This can be done, as in the case of
RSA, by choosing a random number in{1, . . . ,k}, testing if it is prime, and if not, throwing it away and
trying again.

Randomized Pattern Matching
Consider the classical problem of searching for a patternY in a stringX. I.e., we want to know whether the
stringY = y1y2 . . .ym (of lengthm) occurs as a contiguous substring ofX = x1x2 . . .xn (which is of lengthn).
This kind of operation is regularly done in almost every piece of software used, e.g., word-processors, web
browsers and databases. Furthermore, it is used frequently enough that finding fast ways of doing this have
been studied for a long time.

The näıve approach of trying every possible match takesO(nm) time. (Why?) There is a rather complicated
deterministic algorithm that runs inO(n+m) time (which is clearly best possible, since just reading the two
strings takesO(m+n) time). A beautifully simple randomized algorithm, due to Karp and Rabin, also runs
in O(n+m) time and is based on the same idea as in the above example.

Let us assume (for simplicity) that the alphabet is binary. LetX(j) = x jx j+1 . . .x j+m−1 denote the substring
of X of lengthm starting at positionj. For example, ifX = 101100001 andm= 5, thenX(2) = 01100.

Algorithm Match-String

pick a random primep in the range{1, . . . ,k}
for j = 1 to n−m+1 do

if X(j) = Y mod p then report match and stop

Note that the test in theif -statement here is the same as checking ifF(X(j)) = F(Y), for the same fingerprint
functionF as in the Alice and Bob problem in the previous section.

If the algorithm runs to completion without reporting a match, thenY definitely does not occur inX. To see
this, note that ifY occured inX, thenY = X(i) for somei, and hence the algorithm would have reported a
match at thei-th step. Hence the only error the algorithm can make is to report a false match.

What is the probability that this happens? By the same analysis as above, for eachj if X(j) 6= Y then

Pr[F(X(j)) = F(Y)]≤ m
π(k)

.

This is the error probability at thej-th step. Therefore we can bound the chance that the algorithm makes
an error in its entire run by applying the union bound. In fact,

Pr[algorithm reports a match]≤ nm
π(k)

∼ 1
c

if we choosek = cnmln(cnm) (exactly as before). As before, we can choosec to be, say, 10 to make the
error probability at most 1/10.

CS 70, Spring 2004, Lecture 26 2

What about the running time? Well, in a simple implementation, each iteration of the loop requires the
computation of a fingerprint of anm-bit number, which takesO(m) time, giving a total running time of
O(nm). This seems to imply that we are doing worse than the naı̈ve implementation, since we take the same
time after doing more involved things, and now we even have the possibility of making errors!

However, things can be substantially improved by noticing that

F(X(j +1)) = 2
(
F(X(j))−2m−1x j

)
+x j+m mod p.

(Check this.) So, givenX(j), computingX(j +1) requires one subtraction, one multiplication (or a shift),
one addition, and finally taking remainders modulo a primep. Hence, under the realistic assumption that
arithmetic operations on fingerprints — which are small — can be done in constant time, each iteration
actually takes only constanttime (except the first iteration, which takesO(m) time to computeF(X(1)) and
F(Y)). Thus the overall running time of the algorithm is thereforeO(n+m) as claimed earlier, and the error
probability is a constant.

We can again make repeated runs of the algorithm to make the error probability vanishingly small. However,
in practice, we would want to eliminate the possibility of false matches entirely. To do this, we could make
the algorithm testany match before reporting it. If it is found to be a false match, the algorithm could simply
restart with a new random primep. The resulting algorithm never makes an error.

Ex: Show that the expected running time of this new algorithm is at mostc
c−1T ≈ T, whereT is the running

time of the original algorithm, and that the probability it runs for at least(`+1)T time is at mostc−`.

CS 70, Spring 2004, Lecture 26 3

