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Variance
Question: Let us return once again to the question of how many heads in a typical sequence of n coin flips.
Recall that we used the Galton board to visualize this as follows: consider a token falling through the Galton
board, deflected randomly to the right or left at each step. We think of these random deflections as taking
place according to whether a fair coin comes up heads or tails. The expected position of the token when it
reaches the bottom is right in the middle, but how far from the middle should we typically expect it to land?

Denoting a right-move by +1 and a left-move by −1, we can describe the probability space here as the set
of all words of length n over the alphabet {±1}, each having equal probability 1

2n . Let the r.v. X denote our
position (relative to our starting point 0) after n moves. Thus

X = X1 +X2 + · · ·+Xn,

where Xi =

{
+1 if ith toss is Heads;
−1 otherwise.

Now obviously we have E(X) = 0. The easiest way to see this is to note that E(Xi) = (1
2×1)+(1

2×(−1)) =
0, so by linearity of expectation E(X) = ∑

n
i=1 E(Xi) = 0. But of course this is not very informative, and is

due to the fact that positive and negative deviations from 0 cancel out.

What the above question is really asking is: What is the expected value of |X |, the distance of the distance
from 0? Rather than consider the r.v. |X |, which is a little awkward due to the absolute value operator, we
will instead look at the r.v. X2. Notice that this also has the effect of making all deviations from 0 positive,
so it should also give a good measure of the distance traveled. However, because it is the squared distance,
we will need to take a square root at the end to make the units make sense.

Let’s calculate E(X2):
E(X2) = E((X1 +X2 + · · ·+Xn)

2)

= E(∑n
i=1 X2

i +∑i6= j XiX j)

= ∑
n
i=1 E(X2

i )+∑i 6= j E(XiX j)

In the last line here, we used linearity of expectation. To proceed, we need to compute E(X2
i ) and E(XiX j)

(for i 6= j). Let’s consider first X2
i . Since Xi can take on only values±1, clearly X2

i = 1 always, so E(X2
i ) = 1.

What about E(XiX j)? Well, XiX j = +1 when Xi = X j = +1 or Xi = X j = −1, and otherwise XiX j = −1.
Also,

Pr[(Xi = X j =+1)∨ (Xi = X j =−1)] = Pr[Xi = X j =+1]+Pr[Xi = X j =−1] =
1
4
+

1
4
=

1
2
,

so XiX j = 1 with probability 1
2 . In the above calculation we used the fact that the events Xi = +1 and

X j =+1 are independent, so Pr[Xi = X j =+1] = Pr[Xi =+1]×Pr[X j =+1] = 1
2 ×

1
2 = 1

4 (and similarly for
Pr[Xi = X j = −1]). Therefore XiX j = −1 with probability 1

2 also. Hence E(XiX j) = 0. Since Xi and X j are
independent, we saw in the last lecture note that it is the case that E(XiX j) = E(Xi)E(X j) = 0.
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Plugging these values into the above equation gives

E(X2) = (n×1)+0 = n.

So we see that our expected squared distance from 0 is n. One interpretation of this is that we might expect
to be a distance of about

√
n away from 0 after n steps. However, we have to be careful here: we cannot

simply argue that E(|X |) =
√

E(X2) =
√

n. (Why not?) We will see later in the lecture how to make precise
deductions about |X | from knowledge of E(X2).

For the moment, however, let’s agree to view E(X2) as an intuitive measure of “spread” of the r.v. X . In
fact, for a more general r.v. with expectation E(X) = µ , what we are really interested in is E((X −µ)2), the
expected squared distance from the mean. In our random walk example, we had µ = 0, so E((X −µ)2) just
reduces to E(X2).

Definition 16.1 (variance): For a r.v. X with expectation E(X) = µ , the variance of X is defined to be

Var(X) = E((X−µ)2).

The square root σ(X) :=
√

Var(X) is called the standard deviation of X .

The point of the standard deviation is merely to “undo” the squaring in the variance. Thus the standard
deviation is “on the same scale as” the r.v. itself. Since the variance and standard deviation differ just by a
square, it really doesn’t matter which one we choose to work with as we can always compute one from the
other immediately. We shall usually use the variance. For the random walk example above, we have that
Var(X) = n, and the standard deviation of X , σ(X), is

√
n.

The following easy observation gives us a slightly different way to compute the variance that is simpler in
many cases.

Theorem 16.1: For a r.v. X with expectation E(X) = µ , we have Var(X) = E(X2)−µ2.

Proof: From the definition of variance, we have

Var(X) = E((X−µ)2) = E(X2−2µX +µ
2) = E(X2)−2µE(X)+µ

2 = E(X2)−µ
2.

In the third step here, we used linearity of expectation. 2

Examples
Let’s see some examples of variance calculations.

1. Fair die. Let X be the score on the roll of a single fair die. Recall from an earlier lecture that E(X)= 7
2 .

So we just need to compute E(X2), which is a routine calculation:

E(X2) =
1
6
(
12 +22 +32 +42 +52 +62)= 91

6
.

Thus from Theorem 16.1

Var(X) = E(X2)− (E(X))2 =
91
6
− 49

4
=

35
12

.

More generally, if X is a random variable that takes on values 1, . . . ,n with equal probability 1/n (i.e.
X has a uniform distribution), the mean, variance and standard deviation of X are:
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E(X) =
n+1

2
, Var(X) =

n2−1
12

, σ(X) =

√
n2−1

12
.

(You should verify these.)

2. Number of fixed points. Let X be the number of fixed points in a random permutation of n items (i.e.,
the number of students in a class of size n who receive their own homework after shuffling). We saw
in an earlier lecture that E(X) = 1 (regardless of n). To compute E(X2), write X = X1 +X2 + · · ·+Xn,

where Xi =

{
1 if i is a fixed point;
0 otherwise

Then as usual we have

E(X2) =
n

∑
i=1

E(X2
i )+∑

i6= j
E(XiX j). (1)

Since Xi is an indicator r.v., we have that E(X2
i ) = Pr[Xi = 1] = 1

n . Since both Xi and X j are indicators,
we can compute E(XiX j) as follows:

E(XiX j) = Pr[Xi = 1∧X j = 1] = Pr[both i and j are fixed points] =
1

n(n−1)
.

[Check that you understand the last step here.] Plugging this into equation (1) we get

E(X2) = (n× 1
n)+(n(n−1)× 1

n(n−1)) = 1+1 = 2.

Thus Var(X) = E(X2)− (E(X))2 = 2− 1 = 1. I.e., the variance and the mean are both equal to 1.
Like the mean, the variance is also independent of n. Intuitively at least, this means that it is unlikely
that there will be more than a small number of fixed points even when the number of items, n, is very
large.

Variance for sums of independent random variables
One of the most important and useful facts about variance is if a random variable X is the sum of independent
random variables X = X1 + · · ·Xn, then its variance is the sum of the variances of the individual r.v.’s. This
is not just true for the specific coin-toss example considered at the beginning of the note.

In particular, if the individual r.v.’s Xi are identically distributed, then Var(X) = ∑i Var(Xi) = n ·Var(X1).
This means that the standard deviation σ(X) =

√
(n)σ(X1). Note that by contrast, the expected value

E[X ] = n ·E[X1]. Intuitively this means that whereas the average value of X grows proportionally to n,
the spread of the distribution grows proportionally to

√
n. In other words the distribution of X tends to

concentrate around its mean. Let us formalize these ideas:

Theorem 16.2: For any random variable X and constant c, we have

Var(cX) = c2Var(X).

And for independent random variables X ,Y , we have

Var(X +Y ) = Var(X)+Var(Y ).
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Proof:

The first part of the proof is a simple calculation. You should verify this yourself as an exercise.

From the alternative formula for variance in Theorem 16.1, we have, using linearity of expectation exten-
sively,

Var(X +Y ) = E((X +Y )2)−E(X +Y )2

= E(X2)+E(Y 2)+2E(XY )− (E(X)+E(Y ))2

= (E(X2)−E(X)2)+(E(Y 2)−E(Y )2)+2(E(XY )−E(X)E(Y ))

= Var(X)+Var(Y )+2(E(XY )−E(X)E(Y )).

Now because X ,Y are independent, the final term in this expression is zero. Hence we get our result. 2

Note: The expression E(XY )−E(X)E(Y ) appearing in the above proof is called the covariance of X and Y ,
and is a measure of the dependence between X ,Y . It is always zero when X ,Y are independent, but it can
also be zero in other cases as well. Those other cases are called uncorrelated random variables, but need
not be independent. The counterexample at the end of the last note can be used to find a case of random
variables that are not independent, but are uncorrelated.

By induction, you can extend the result above to larger collection of independent random variables. However
in the homework, you will see that actually, pairwise independence will do just fine. Actual independence
is not needed.

Example
Let’s return to our motivating example of a sequence of n coin tosses. Let X the the number of Heads in n
tosses of a biased coin with Heads probability p (i.e., X has the binomial distribution with parameters n, p).

We already know that E(X) = np. As usual, let X = X1+X2+ · · ·+Xn, where Xi =

{
1 if ith toss is Head;
0 otherwise

.

We can compute Var(Xi) = E(X2
i )−E(Xi)

2 = p− p2 = p(1− p). So Var(X) = np(1− p).

As an example, for a fair coin the expected number of Heads in n tosses is n
2 , and the standard deviation

is
√

n
2 . Note that since the maximum number of Heads is n, the standard deviation is much less than this

maximum number for large n. This is in contrast to the previous example of the uniformly distributed
random variable, where the standard deviation

σ(X) =
√
(n2−1)/12≈ n/

√
12

is of the same order as the largest value n. In this sense, the spread of a binomially distributed r.v. is much
smaller than that of a uniformly distributed r.v.

However, to actually make it precise exactly how the variance is connected to the spread of a distribution,
we need to build one more critical tool — a way to use expectations to bound the underlying probability
distributions themselves.

Chebyshev’s Inequality
We have seen that, intuitively, the variance (or, more correctly the standard deviation) is a measure of
“spread”, or deviation from the mean. Our next goal is to make this intuition quantitatively precise. What
we can show is the following:
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Theorem 16.3: [Chebyshev’s Inequality] For a random variable X with expectation E(X) = µ , and for any
α > 0,

Pr[|X−µ| ≥ α]≤ Var(X)

α2 .

Before proving Chebyshev’s inequality, let’s pause to consider what it says. It tells us that the probability of
any given deviation, α , from the mean, either above it or below it (note the absolute value sign), is at most
Var(X)

α2 . As expected, this deviation probability will be small if the variance is small. An immediate corollary
of Chebyshev’s inequality is the following:

Corollary 16.4: For a random variable X with expectation E(X)= µ , and standard deviation σ =
√

Var(X),

Pr[|X−µ| ≥ βσ ]≤ 1
β 2 .

Proof: Plug α = βσ into Chebyshev’s inequality. 2

So, for example, we see that the probability of deviating from the mean by more than (say) two standard
deviations on either side is at most 1

4 . In this sense, the standard deviation is a good working definition of
the “width” or “spread” of a distribution.

We should now go back and prove Chebyshev’s inequality. The proof will make use of the following simpler
bound, which applies only to non-negative random variables (i.e., r.v.’s which take only values ≥ 0).

Theorem 16.5: [Markov’s Inequality] For a non-negative random variable X with expectation E(X) = µ ,
and any α > 0,

Pr[X ≥ α]≤ E(X)

α
.

Proof: From the definition of expectation, we have

E(X) = ∑a a×Pr[X = a]

≥ ∑a≥α a×Pr[X = a]

≥ α ∑a≥α Pr[X = a]

= α Pr[X ≥ α].

The crucial step here is the second line, where we have used the fact that X takes on only non-negative
values. (Why is this step not valid otherwise?) 2

There is an intuitive way of understanding Markov’s inequality through an analogy of a seesaw. Imagine
that the distribution of a non-negative random variable X is resting on a fulcrum, µ = E(X). We are trying
to find an upper bound on the percentage of the distribution which lies beyond kµ , i.e. Pr[X ≥ kµ]. In other
words, we seek to add as much weight m2 as possible on the seesaw at kµ while minimizing the effect it has
on the seesaw’s balance. This weight will represent the upper bound we are searching for. To minimize the
weight’s effect, we must imagine that the weight of the distribution which lies beyond kµ is concentrated at
exactly kµ . However, to keep things stable and maximize the weight at kµ , we must add another weight m1
as far left to the fulcrum as we can so that m2 is as large as it can be. The farthest we can go to the left is
0, since X is non-negative. Moreover, the two weights m1 and m2 must add up to 1, since they represent the
area under the distribution curve:

Since the lever arms are in the ratio k−1 to 1, a unit weight at kµ balances k−1 units of weight at 0. So the
weights should be k−1

k at 0 and 1
k at kµ , which is exactly Markov’s bound.
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Figure 1: Markov’s inequality interpreted as balancing a seesaw.

Now we can prove Chebyshev’s inequality quite easily.

Proof of Theorem 16.3 Define the r.v. Y = (X − µ)2. Note that E(Y ) = E((X − µ)2) = Var(X). Also,
notice that the probability we are interested in, Pr[|X −µ| ≥ α], is exactly the same as Pr[Y ≥ α2]. (Why?)
Moreover, Y is obviously non-negative, so we can apply Markov’s inequality to it to get

Pr[Y ≥ α
2]≤ E(Y )

α2 =
Var(X)

α2 .

This completes the proof. 2

Examples
Here are some examples of applications of Chebyshev’s inequality (you should check the algebra in them):

1. Coin tosses. Let X be the number of Heads in n tosses of a fair coin. The probability that X deviates
from µ = n

2 by more than
√

n is at most 1
4 . The probability that it deviates by more than 5

√
n is at

most 1
100 .

You have seen this in your virtual labs. You should also know that this is a pretty coarse bound.

2. Fixed points. Let X be the number of fixed points in a random permutation of n items; recall that
E(X) = Var(X) = 1. Thus the probability that more than (say) 10 students get their own homeworks
after shuffling is at most 1

100 , however large n is.

In some special cases, including the coin tossing example above, it is possible to get much tighter bounds on
the probability of deviations from the mean. However, for general random variables Chebyshev’s inequality
is sometimes the only tool. Its power derives from the fact that it can be applied to any random variable, as
long as it has a variance.

Estimating the bias of a coin
Question: We want to estimate the proportion p of Democrats in the US population, by taking a small
random sample. How large does our sample have to be to guarantee that our estimate will be within (say)
and additive factor of 0.1 of the true value with probability at least 0.95?
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This is perhaps the most basic statistical estimation problem, and shows up everywhere. We will develop
a simple solution that uses only Chebyshev’s inequality. More refined methods can be used to get sharper
results.

Let’s denote the size of our sample by n (to be determined), and the number of Democrats in it by the
random variable Sn. (The subscript n just reminds us that the r.v. depends on the size of the sample.) Then
our estimate will be the value An =

1
n Sn.

Now as has often been the case, we will find it helpful to write Sn = X1 +X2 + · · ·+Xn, where

Xi =

{
1 if person i in sample is a Democrat;
0 otherwise.

Note that each Xi can be viewed as a coin toss, with Heads probability p (though of course we do not
know the value of p!). And the coin tosses are independent.1 We call such a family of random variables
independent, identically distributed, or i.i.d. for short.

What is the expectation of our estimate?

E(An) = E(1
n Sn) =

1
n E(X1 +X2 + · · ·+Xn) =

1
n × (np) = p.

So for any value of n, our estimate will always have the correct expectation p. [Such a r.v. is often called an
unbiased estimator of p.] Now presumably, as we increase our sample size n, our estimate should get more
and more accurate. This will show up in the fact that the variance decreases with n: i.e., as n increases, the
probability that we are far from the mean p will get smaller.

To see this, we need to compute Var(An). But An =
1
n ∑

n
i=1 Xi, which is just a multiple of a sum of independent

random variables.

Var(An) = Var(1
n

n

∑
i=1

Xi) = (1
n)

2Var(
n

∑
i=1

Xi) = (1
n)

2
n

∑
i=1

Var(Xi) =
σ2

n
,

where we have written σ2 for the variance of each of the Xi. So we see that the variance of An decreases
linearly with n. This fact ensures that, as we take larger and larger sample sizes n, the probability that we
deviate much from the expectation p gets smaller and smaller.

Let’s now use Chebyshev’s inequality to figure out how large n has to be to ensure a specified accuracy
in our estimate of the proportion of Democrats p. A natural way to measure this is for us to specify two
parameters, ε and δ , both in the range (0,1). The parameter ε controls the error we are prepared to tolerate
in our estimate, and δ controls the confidence we want to have in our estimate. A more precise version of
our original question is then the following:

Question: For the Democrat-estimation problem above, how large does the sample size n have to be in order
to ensure that

Pr[|An− p| ≥ ε]≤ δ ?

In our original question, we had ε = 0.1 and δ = 0.05.

Let’s apply Chebyshev’s inequality to answer our more precise question above. Since we know Var(An),
this will be quite simple. From Chebyshev’s inequality, we have

Pr[|An− p| ≥ ε]≤ Var(An)

ε2 =
σ2

nε2 .

1We are assuming here that the sampling is done “with replacement”; i.e., we select each person in the sample from the entire
population, including those we have already picked. So there is a small chance that we will pick the same person twice.
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To make this less than the desired value δ , we need to set

n≥ σ2

ε2δ
. (2)

Now recall that σ2 = Var(Xi) is the variance of a single sample Xi. So, since Xi is a 0/1-valued r.v., we have
σ2 = p(1− p), and inequality (2) becomes

n≥ p(1− p)
ε2δ

. (3)

Since p(1− p) is takes on its maximum2 value for p = 1/2, we can conclude that it is sufficient to choose n
such that:

n≥ 1
4ε2δ

. (4)

Plugging in ε = 0.1 and δ = 0.05, we see that a sample size of n = 500 is sufficient. Notice that the size
of the sample is independent of the total size of the population! This is how polls can accurately estimate
quantities of interest for a population of several hundred million while sampling only a very small number
of people.

Estimating a general expectation
What if we wanted to estimate something a little more complex than the proportion of Democrats in the
population, such as the average wealth of people in the US? Then we could use exactly the same scheme
as above, except that now the r.v. Xi is the wealth of the ith person in our sample. Clearly E(Xi) = µ , the
average wealth (which is what we are trying to estimate). And our estimate will again be An =

1
n ∑

n
i=1 Xi, for

a suitably chosen sample size n. Once again the Xi are i.i.d. random variables, so we again have E(An) = µ

and Var(An) =
σ2

n , where σ2 = Var(Xi) is the variance of the Xi. (Recall that the only facts we used about
the Xi was that they were independent and had the same distribution — actually the same expectation and
variance would be enough: why?) This time, however, since we do not have any a priori bound on the mean
µ , it makes more sense to let ε be the relative error. i.e. we wish to find an estimate An that is within an
additive error of εµ:

Pr[|An−µ| ≥ εµ]≤ δ .

Using equation (2), but substituting εµ in place of ε , it is enough for the sample size n to satisfy

n≥ σ2

µ2 ×
1

ε2δ
. (5)

Here ε and δ are the desired relative error and confidence respectively. Now of course we don’t know the
other two quantities, µ and σ2, appearing in equation (5). In practice, we would use a lower bound on µ

and an upper bound on σ2 (just as we used a lower bound on p in the Democrats problem). Plugging these
bounds into equation (5) will ensure that our sample size is large enough.

For example, in the average wealth problem we could probably safely take µ to be at least (say) $20k
(probably more). However, the existence of people such as Bill Gates means that we would need to take a
very high value for the variance σ2. Indeed, if there is at least one individual with wealth $50 billion, then
assuming a relatively small value of µ means that the variance must be at least about (50×109)2

250×106 = 1013. (Check

2Use calculus if you need to see why this is true.
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this.) There is really no way around this problem with simple uniform sampling: the uneven distribution of
wealth means that the variance is inherently very large, and we will need a huge number of samples before
we are likely to find anybody who is immensely wealthy. But if we don’t include such people in our sample,
then our estimate will be way too low.

The Law of Large Numbers
The estimation method we used in the previous two sections is based on a principle that we accept as part
of everyday life: namely, the Law of Large Numbers (LLN). This asserts that, if we observe some random
variable many times, and take the average of the observations, then this average will converge to a single
value, which is of course the expectation of the random variable. In other words, averaging tends to smooth
out any large fluctuations, and the more averaging we do the better the smoothing.

Theorem 16.6: [Law of Large Numbers] Let X1,X2, . . . ,Xn be i.i.d. random variables with common ex-
pectation µ = E(Xi). Define An =

1
n ∑

n
i=1 Xi. Then for any α > 0, we have

Pr [|An−µ| ≥ α]→ 0 as n→ ∞.

Proof: Let Var(Xi) = σ2 be the common variance of the r.v.’s; we assume that σ2 is finite3. With this
(relatively mild) assumption, the LLN is an immediate consequence of Chebyshev’s Inequality. For, as we
have seen above, E(An) = µ and Var(An) =

σ2

n , so by Chebyshev we have

Pr [|An−µ| ≥ α]≤ Var(An)

α2 =
σ2

nα2 → 0 as n→ ∞.

This completes the proof. 2

Notice that the LLN says that the probability of any deviation α from the mean, however small, tends to
zero as the number of observations n in our average tends to infinity. Thus by taking n large enough, we can
make the probability of any given deviation as small as we like.

3If σ2 is not finite, the LLN still holds but the proof is much trickier.
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