Issued: September 20, 2004 Due: September 27, 2004

- 1. Do Peoblem3.3.
- 2. Do Problem 3.4.
- 3. Do Problem 3.6.
- 4. Do Problem 3.8.
- 5. Do Problem 3.16.
- 6. Do Problem 3.20.

3.3 Using node voltage analysis in the circuit of Figure P3.3, find the currents i_1 and i_2 . $R_1 = 3 \Omega$: $R_2 = 1 \Omega$; $R_3 = 6 \Omega$.

Figure P3.3

3.4 Use the mesh analysis to determine the currents i_1 and i_2 in the circuit of Figure P3.3.

3.6 Using node voltage analysis in the circuit of Figure P3.6, find the three indicated node voltages. Let I = 0.2 A; $R_1 = 200 \Omega$; $R_2 = 75 \Omega$; $R_3 = 25 \Omega$; $R_4 = 50 \Omega$; $R_5 = 100 \Omega$; V = 10 V.

Figure P3.6

3.8 The circuit shown in Figure P3.8 is a Wheatstone bridge circuit. Use node voltage analysis to determine V_a and V_b , and thus determine $V_a - V_b$.

Figure P3.8

3.16 Use mesh current analysis to find the current i in the circuit of Figure P3.16. Let V = 5.6 V; $R_1 = 50 \Omega$; $R_2 = 1.2 \text{ k}\Omega$; $R_3 = 330 \Omega$; $g_m = 0.2 \text{ S}$; $R_4 = 440 \Omega$.

Figure P3.16

3.20 Using mesh current analysis, find the voltage gain $A_v = v_2/v_1$ in the circuit of Figure P3.20.

Figure P3.20