
EECS 100  RC Circuits 

EE100 Lab 3 Experiment Guide: RC Circuits 
 
I. Introduction 
 
A. Capacitors 

A capacitor is a passive electronic component that stores energy in the form of an 
electrostatic field. The unit of capacitance is the farad (coulomb/volt).  Practical capacitor 
values usually lie in the picofarad (1 pF = 10-12 F) to microfarad (1 µF = 10-6 F) range. 

Recall that a current is a flow of charges. When current flows into one plate of a 
capacitor, the charges don't pass through (although to maintain local charge balance, an 
equal number of the same polarity charges leave the other plate of the device) but instead 
accumulate on that plate, increasing the voltage across the capacitor. The voltage across 
the capacitor is directly proportional to the charge Q stored on the plates: 
  

(Eq. 2) CVQ =  
 
Since Q is the integration of current over time, we can write: 
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 (Eq. 3) 

 
Differentiating this equation, we obtain the I-V characteristic equation for a capacitor: 
 

dt
dVCi =  (Eq. 4) 

B. RC Circuits 
An RC (resistor + capacitor) circuit will have an exponential voltage response of the 

form v(t) = A + B e-t/RC where constant A is the final voltage and constant B is the 
difference between the initial and the final voltages. (ex is e to the x power, where e = 
2.718, the base of natural logarithms.)  The product RC is called the time constant 
(whose units are seconds, if R is in ohms and C is in farads), and is usually represented 
by the Greek letter τ. The voltage can be written conveniently in terms of the initial and 
final voltages and the time constant as 

                 v(t) = v(final) + [v(initial) – v(final)]e-t/τ

When the time has reached a value equal to the time constant, τ, then the voltage is  
B e-τ/RC = B e-1 = 0.37 * B volts away from the final value A, or about 63% of the way 
from the initial value (A + B) to the final value (A). 

The characteristic “exponential decay” associated with an RC circuit is important to 
understand, because complicated circuits can oftentimes be modeled simply as a resistor 
and a capacitor.  This is especially true in integrated circuits (ICs). 

A simple RC circuit is drawn in Figure 1 with currents and voltages defined as 
shown.  Equation 5 is obtained from Kirchhoff’s Voltage Law, which states that the 
algebraic sum of voltage drops around a closed loop is zero. Equation 6 is the defining I-
V characteristic equation for a capacitor (as derived above), and Equation 7 is the 
defining I-V characteristic equation for a resistor (Ohm’s Law). 
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Figure 1 

 
 

RCIN VVV +=  (Eq. 5) 
 

dt
dV

CI C=  (Eq. 6) 

 
(Eq. 7) IRVR =  

 
By substituting Equations 6 and 7 into Equation 5, the following first-order linear 
differential equation is obtained: 

dt
dV

RCVV c
CIN +=  (Eq. 8) 

 
If VIN is a step function at time t = 0, then VC and VR are of the forms: 
 

RCt
C BeAV /−+=  (Eq. 9) 

 
RCt

R eBAV /−′+′=  (Eq. 10) 

 
If a voltage difference exists across the resistor (i.e., VR <> 0), then current will flow (Eq. 
7).  This current flows through the capacitor and causes VC to change (Eq. 6).  VC will 
increase (if I > 0) or decrease (if I < 0) exponentially with time, until it reaches the value 
of VIN, at which time the current goes to zero (since VR = 0).  For the square-wave 
function VIN shown in Figure 2a, the responses VC and VR are shown in Figure 2b and 
Figure 2c, respectively. 
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Note that if the frequency of the square wave VIN is too high (i.e., if f>>1/RC), then VC 
and VR will not have enough time to reach their asymptotic values.  If the frequency is too 
low (i.e., if f<<1/RC), the decay time will be very short relative to the period of the 
waveform and thus the exponential decay will be difficult to observe.  As a rough 
guideline, the period of the square wave should be chosen such that it is approximately 
equal to 10RC, in order for the responses shown in Figure 2b-c to be readily observed on 
an oscilloscope.   

Figure 2 (a) (b) (c) 

 
II. Hands On 
 
A. Determining the RC Circuit Configuration 
In this part of the experiment, you will make ohmmeter measurements to see if you can 
discover a method to determine if a resistor and capacitor are connected in series or in 
parallel. 
 

Ohmmeter Ohmmeter

Figure 3 Figure 4

+

-

VC(t)

+

-
VC(t)

 Series RC Circuit Parallel RC Circuit 
 
(a) Get a resistor and capacitor from your TA.  

Recall that an ohmmeter has a built-in current source that sends a small current into 
the circuit under test.  The ohmmeter reads the voltage across the circuit under test 
and determines the resistance of the circuit using Ohm’s Law.  
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(b) Build the circuit shown in Figure 3.  Note that the ohmmeter’s current source keeps 
on charging up the capacitor.  (For small values of capacitance, the capacitor will be 
fully charged almost instantly.) 
Question 1: Are you able to measure the value of the resistor?  If not, explain the 
reason why you cannot make the measurement. 
 

(c) Build the circuit shown in Figure 4.  Note that the capacitor stops charging when the 
current through the resistor is equal to the current from the ohmmeter. 
Question 2:  Explain how you got your ohmmeter reading for the circuit in Figure 4.  
Why does it take some time before the ohmmeter’s reading stabilizes? 
 
Question 3:  Given a black box with either a series or parallel RC circuit, can you 
determine the RC configuration using an ohmmeter?  If so, how? 

 
B. Identifying Physical Values in a Series RC Circuit Black Box and a Parallel RC 

Circuit Black Box 
 

The TA will give you two “black boxes” (if available).  One contains a series RC 
circuit and the other contains a parallel RC circuit.  Determine the basic resistor-
capacitor configuration in each black box using an ohmmeter. If you are instructed to 
build the “black box” yourself, note that you are not allowed access to the node 
shared by RB and CB, so you can’t measure RB directly. Please use the breadboard. 
Question 4:  Determine whether each “block box” is a series or parallel RC circuit.  
 

1) Series RC Circuit Black Box 
 
(a) Construct the circuit below for the black box that contains the unknown resistor RB 

and capacitor CB in series. There is an RS = 50 ohms source resistor inside the 
function generator (might be negligible) and Rx is the external resistor that is 
suggested by the TA. Measure and record RX. 
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(b) Set the amplitude of the square wave to about 5 VPP (not critical), with 0 VDC offset.  
Adjust the frequency of the square wave and the scope viewing scale until you see the 
exponential characteristic decay. (Make sure that you are using the waveform from 
the OUTPUT terminal of the function generator, not the SYNC terminal.) 
 

(c) Note that the voltage across Rx follows the shape of VIN – VC (try the math and look 
at the nice pictures). 

 

V  C  (t)   

t  

V  IN  (t)    

t  

V  X (t) ∝  V IN(t) - V C(t)    t  

V   X  (t)   

V 0    

- V 0    

V 0    

 
Figure 6: Voltage waveforms in a series RC circuit 

 
(d)  From voltage VX across RX, you could use Ohm’s Law to obtain the current IX, but 

both IX and VX will have the same time constant. You should trigger on A1 edge and 
set Main Time Ref to Left, and always use the knobs to zoom in upon your cursor 
measurements. Your TA should review use of the CURSOR function: Set cursor V1 
to ground, set cursor V2 to the peak and record ∆V(A1). Next, move V2 to 0.368 of 
that value. Move t1 to the start, move t2 to intersect V2. ∆t is the time constant.  
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Figure 7:  How to measure the time constant τ1 on the oscilloscope 
 
Question 5:  What is the time constant τ1? What is the value of RX? 

 
(d) Now increase the value of RX by about a factor of ten. Measure the new RX2.  

Question 6:  What is the time constant τ2? What is the value of RX2? 
 
Question 7:  Solve for the resistance RB and capacitance CB using the formula for the 
time constant in both trials. τ = CB (RS + RB + RX).  Ask your TA for the resistance 
and capacitance values.  Are they in good agreement with the values you have 
obtained experimentally?  Explain if there are any significant differences.  

 
2) Parallel RC Circuit Black Box 
 
(a) Build the Parallel “Black Box” using unknown RB and CB from your TA. Measure the 

resistance of the circuit inside the black box using the ohmmeter. The rest of the 
measurements go toward finding the capacitance CB. 
Question 8:  What is the measured value of the resistor inside the black box? 

 
(b) Select a resistor RX of a value comparable to the resistor RB and construct the circuit 

below.  Measure the time constant of the circuit with RX.  
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Figure 9:  Setup for finding R and C of an unknown parallel RC circuit 
 
Question 9: Measure the time constant of the circuit with RX, then solve for the value 
of the capacitor CB.  Ask your TA for the values of the resistor and the capacitor 
inside the black box.  Are they in good agreement with the values you have obtained 
experimentally?  Explain if there are any significant differences.  
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