EE 100/42 Spring 2009
 Solutions to Homework 2

P 2.9 Combining the resistances shown in Figure P 2.9b, we have

$$
\begin{aligned}
\mathrm{R}_{\mathrm{eq}} & =1+\frac{1}{1+\frac{1}{R_{\mathrm{eq}}}}+1=2+\frac{\mathrm{R}_{\mathrm{eq}}}{1+\mathrm{R}_{\mathrm{eq}}} \\
\mathrm{R}_{\mathrm{eq}}\left(1+\mathrm{R}_{\mathrm{eq}}\right) & =2\left(1+\mathrm{R}_{\mathrm{eq}}\right)+\mathrm{R}_{\mathrm{eq}} \\
\left(\mathrm{R}_{\mathrm{eq}}\right)^{2} & =2 \mathrm{R}_{\mathrm{eq}}-2=0 \\
\mathrm{R}_{\mathrm{eq}} & =2.732 \Omega
\end{aligned}
$$

$$
\left(\mathrm{R}_{\mathrm{eq}}=-0.732 \Omega \text { is another root, but is not physically reasonable }\right)
$$

P 2.10 The 12Ω and 6Ω resistors are in parallel having an equivalent resistance of 4Ω. Similarly, the 18Ω and 9Ω resistors are in parallel and have an equivalent resistance of 6Ω. Finally, the two parallel combinations are in series and we have:

$$
\mathrm{R}_{\mathrm{ab}}=4+6=10 \Omega
$$

P 2.16 The 20Ω and 30Ω resistors are in parallel and have an equivalent resistance of $\mathrm{R}_{\text {eq } 1}=$ 12Ω. The 40Ω and 60Ω are in parallel and have an equivalent resistance of $\mathrm{R}_{\mathrm{eq} 2}=24 \Omega$. Next we see that $\mathrm{R}_{\text {eq1 }}$ and the 4Ω resistor are in series and have equivalent resistance of $\mathrm{R}_{\mathrm{eq} 3}=\mathrm{R}_{\mathrm{eq} 1}+4=16 \Omega$. Finally, $\mathrm{R}_{\mathrm{eq} 2}$ and $\mathrm{R}_{\mathrm{eq} 3}$ are in parallel and the overall equivalent resistance is

$$
\mathrm{R}_{\mathrm{ab}}=\frac{1}{\frac{1}{\mathrm{R}_{\mathrm{eq} 2}}+\frac{1}{\mathrm{R}_{\mathrm{eq} 3}}}=9.6 \Omega
$$

P 2.47 At node 1 we have: $\frac{V_{1}}{20}+\frac{V_{1}-V_{2}}{10}=1$
At node 2 we have: $\frac{V_{2}}{5}+\frac{V_{2}-V_{1}}{10}=2$
The equations can be rewritten as

$$
\begin{array}{r}
0.15 V_{1}-0.1 V_{2}=1 \\
-0.1 V_{1}+0.3 V_{2}=2
\end{array}
$$

Solving simultaneously we get $V_{1}=14.29$ and $V_{2}=11.43$
Then we have $i_{1}=\frac{V_{1}-V_{2}}{10}=0.2857 \mathrm{~A}$

P 2.49 Writing KCL equations at nodes 1, 2, and 3 we have

$$
\begin{array}{r}
\frac{V_{1}}{5}+\frac{V_{1}-V_{2}}{15}+\frac{V_{1}-V_{3}}{15}=0 \\
\frac{V_{2}-V_{1}}{15}+\frac{V_{2}-V_{3}}{15}=4 \\
\frac{V_{3}}{25}+\frac{V_{3}-V_{2}}{15}+\frac{V_{3}-V_{1}}{15}=0
\end{array}
$$

These equations can be rewritten as

$$
\begin{aligned}
.333 V_{1}-0.06667 V_{2}-0.06667 V_{3} & =0 \\
-0.06667 V_{1}+0.1333 V_{2}-0.06667 V_{3} & =4 \\
-0.06667 V_{1}-0.06667 V_{2}+0.1733 V_{3} & =0
\end{aligned}
$$

Solving simultaneously we get $V_{1}=15, V_{2}=50$, and $V_{3}=25$
P 2.51 Writing KCL equations at nodes 1 and 2, we have

$$
\begin{aligned}
\frac{V_{1}}{21}+\frac{V_{1}}{28}+\frac{V_{1}-V_{2}}{9} & =3 \\
\frac{V_{2}-V_{1}}{9}+\frac{V_{2}}{6} & =-3
\end{aligned}
$$

which can be rewritten as

$$
\begin{aligned}
0.194 V_{1}-0.111 V_{2} & =3 \\
-0.111 V_{1}+0.278 V_{2} & =-3
\end{aligned}
$$

Solving simultaneously we find $V_{1}=12$ and $V_{2}=-6$.
If the source is reversed, the algebraic signs of the node voltages are reversed.
P 2.54 Once a 1 Amp source is connected to a and b , three nodal equations can be written

$$
\begin{array}{r}
\frac{V_{1}-V_{2}}{10}+\frac{V_{1}-V_{3}}{20}=1 \\
\frac{V_{2}}{10}+\frac{V_{2}-V_{1}}{10}+\frac{V_{2}-V_{3}}{10}=0 \\
\frac{V_{3}}{20}+\frac{V_{3}-V_{1}}{20}+\frac{V_{3}-V_{2}}{10}=0
\end{array}
$$

Solving simultaneously, we find $\mathrm{R}_{\mathrm{eq}}=V_{1}=13.33 \Omega$
P 2.62 Writing KVL equations around each mesh, we have

$$
\begin{aligned}
5 i_{1}+7\left(i_{1}-i_{3}\right)+100 & =0 \\
11\left(i_{2}-i_{3}\right)+13 i_{2}-100 & =0 \\
9 i_{3}+11\left(i_{3}-i_{2}\right)+7\left(i_{3}-i_{1}\right) & =0
\end{aligned}
$$

which can be rewritten as

$$
\begin{aligned}
12 i_{1}-7 i_{3} & =-100 \\
24 i_{2}-11 i_{3} & =100 \\
-7 i_{1}-11 i_{2}+27 i_{3} & =0
\end{aligned}
$$

Solving, we obtain $i_{1}=-8.741 \mathrm{~A}, i_{2}=3.846 \mathrm{~A}$, and $i_{3}=-0.6993 \mathrm{~A}$. Then, the power delivered by the source is $\mathrm{P}=100\left(i_{1}-i_{2}\right)=1259 \mathrm{~W}$.

