## EE 100/42 Spring 2009 <br> Solutions to Homework 3

P 2.75 First, zeroing the source: voltage source $\rightarrow$ short, current source $\rightarrow$ open
$R_{t}=\frac{5 \times 10}{5+10}=3.333 \Omega$
Then, write the node voltage equation: $\frac{10-v_{O C}}{10}+1=\frac{v_{O C}}{5}, v_{O C}=6.667 \mathrm{~V}$
Therefore, the Thevenin equivalent circuit is a 6.667 V voltage source in series with $\mathrm{R}_{\mathrm{t}}=3.333 \Omega$, and the Norton equivalent circuit is a 2A current source in parallel with $R_{t}=3.333 \Omega$.

P 2.79 First, zeroing the source: $R_{t}=\frac{12 \times 24}{12+24}=8 \Omega$
Notice that the $10 \Omega$ resistor has no effect on the equivalent circuit because the voltage across the 12 V source is independent of the resistor value.
Then, write the node voltage equation: $1+\frac{v_{a}}{24}+\frac{v_{a}+12}{12}=0, v_{a}=-16 \mathrm{~V}$
Therefore, the Thevenin equivalent circuit is a -16 V voltage source $\left(V_{a b}=-16 \mathrm{~V}\right)$ in series with $\mathrm{R}_{\mathrm{t}}=8 \Omega$, and the Norton equivalent circuit is a -2 A current source ( $I_{a b}=-2 \mathrm{~A}$ ) in parallel with $\mathrm{R}_{\mathrm{t}}=8 \Omega$.

P 2.80 The Thevenin equivalent circuit is a 12.6 V voltage source in series with $\mathrm{R}_{\mathrm{t}}$ and $0.1 \Omega$ load.


We then have $i=100 A=\frac{12.6}{R_{t}+1}$, from which we find $R_{t}=0.026 \Omega$
The Thevenin equivalent circuit is a 12.6 V voltage source in series with $\mathrm{R}_{\mathrm{t}}=0.026 \Omega$, and the Norton equivalent circuit is a 484.6 A current source in parallel with $\mathrm{R}_{\mathrm{t}}=0.026 \Omega$.


Since no energy is converted from chemical form to heat in a battery under open-circuit conditions, the Thevenin equivalent seems more realistic from an energy conversion standpoint.

P 2.82 For a load of 7 ohm ,
$i_{L}=7 / 7=1 A$
$v_{L}=V_{t}-R_{t} i_{L} \Rightarrow 7=V_{t}-R_{t}$
For a load of 10 ohm
$i_{L}=8 / 10=0.8 \mathrm{~A}$
$v_{L}=V_{t}-R_{t} i_{L} \Rightarrow 8=V_{t}-0.8 R_{t}$

Solve above equations, we can obtain $V_{t}=12 \mathrm{~V}, R_{t}=5 \Omega$
P 2.84 The maximum power is obtained for a load resistance equal to the Thevenin resistance.
Therefore, from P 2.75, $P_{\max }=\frac{\left(V_{t} / 2\right)^{2}}{R_{t}}=\frac{(6.666 / 2)^{2}}{3.333}=3.333 \mathrm{~W}$

P 2.89 First, zero the current source and get the current due to the voltage source: $i_{V}=\frac{30}{15}=2 \mathrm{~A}$
Then, zero the voltage source and get the current due to the current source: $i_{C}=3 \times \frac{10}{5+10}=2 \mathrm{~A}$ Therefore, the total current $i=i_{V}+i_{C}=4 \mathrm{~A}$

P3.5 $Q=C V=\left(10 \times 10^{-6}\right)(50)=500 \mu C$
One plate has a net positive charge of $500 \mu \mathrm{C}$ and the other has a net negative charge of $500 \mu \mathrm{C}$. The total net charge on both plates is zero.

P 3.11

$$
\begin{aligned}
& v(t)=\frac{1}{C} \int_{0}^{t} i(t) d t+v(0)=2 \times 10^{6} \int_{0}^{t} i(t) d t \\
& p(t)=v(t) i(t) \\
& w(t)=\frac{1}{2} C v^{2}(t)=0.25 \times 10^{-6} \times v^{2}(t)
\end{aligned}
$$

P 3.24 (a) $C_{e q}=1+\frac{1}{\frac{1}{2}+\frac{1}{2}}=2 \mu F$
(b) $C_{e q}=\left(\left(\frac{1}{\frac{1}{4}+\frac{1}{4}}+2\right)^{-1}+\frac{1}{12}\right)^{-1}+5=8 \mu F$

P 3.25 (a) $C_{e q}=3+\left(\frac{1}{10}+\frac{1}{15}\right)^{-1}+\left(\frac{1}{12}+\frac{1}{(5+1)}\right)^{-1}=13 \mu F$
(b) $C_{e q}=\left(\frac{1}{10+8}+\frac{1}{4+5}\right)^{-1}=6 \mu F$

P 10.22 If remove the diode, the Thevenin equivalent circuit consists of a 12 V voltage source in series with a $3 \mathrm{k} \Omega$ resistor. Since this diode offers constant-current when V is greater than 1 V , we have $i_{1}=3.0 \mathrm{~mA}$ and $i_{2}=6-i_{1}=3.0 \mathrm{~mA}$

