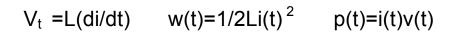
EECS 100, Spring 2009

Homework #4

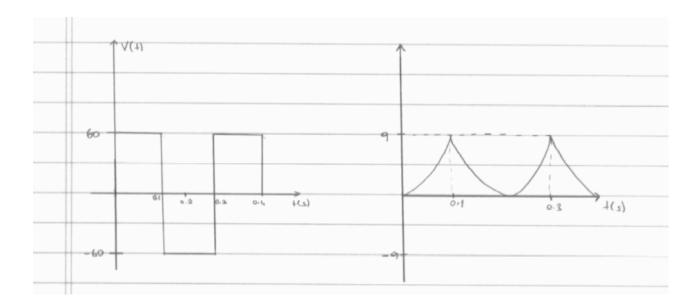
P 3.25 (a)
$$C_{eq} = 3 + \left(\frac{1}{10} + \frac{1}{15}\right)^{-1} + \left(\frac{1}{12} + \frac{1}{(5+1)}\right)^{-1} = 13\mu F$$

(b) $C_{eq} = \left(\frac{1}{10+8} + \frac{1}{4+5}\right)^{-1} = 6\mu F$


P.3.28


I=C(dv/dt) q=CV C_{eq}=1/C1+1/C2=6uF

Q=CV= C_{eq.}V=60uC


 $V_1 = Q/C_1 = 4V$ $V_2 = Q/C_2 = 6V$

P.3.45

Page 2 of 8

3.62 a) L1=1H+2H=3H L2=1/3+1/6=2H Lequ=2H+1H=3H

b) L1=1/20+1/5=4H L2=1/18+1/9=6H L1+L2=10H

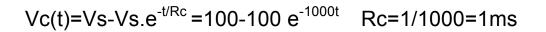
Lfinal=1/10+1/15=6

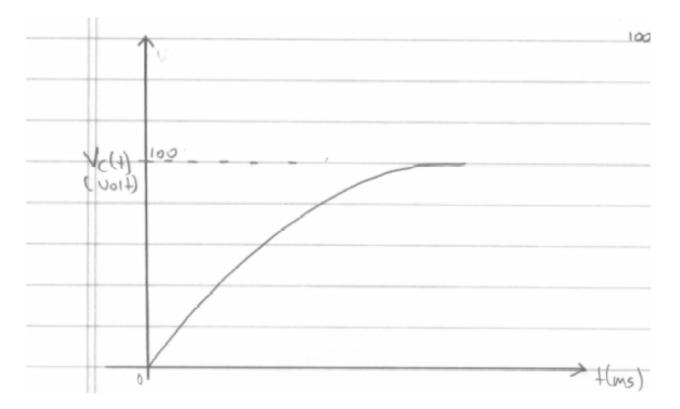
3.68

 $c(t)=0.1\cos(10^{5}t)$ $V_{L}=L(di/dt)=-100\sin(10^{5}t)$

 $V_{R} = i(t)Rs = 0.1cos(10^{5}t)$

 $V_{L} + V_{R} = 0.1\cos(10^{5}t) - 100\sin(10^{5}t)$


***%1 accuracy Ignore Resistance.


b) $i(t)=0.1\cos(10t)$ V_R= $i(t)Rs=0.1\cos(10t)$

$$V_{L} = L(di/dt) = -0.01 sin(10t)$$

*** Resistance cannot be ignored

4.3

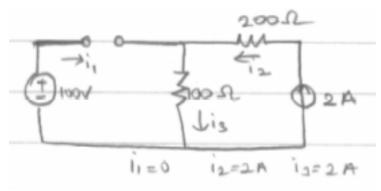
4.7

a)
$$Vc(t)=Vi.e^{-t/Rc}=50 e^{-50t}$$
 $Vc(t)=50 e^{-50t} t>0$

Vc(t)=50 t<0

Vr(t) = Vc(t) t > 0 Vc(t) = 0 t < 0

 $P(t)=i(t)V(t)=V(t)^2 /R=2500 e^{-100t} MW$


Wr= $\int P_R dt = 25 MJ$

Wc=1/2CV² =1/2(0.02.10⁻⁶.50²)=25MJ

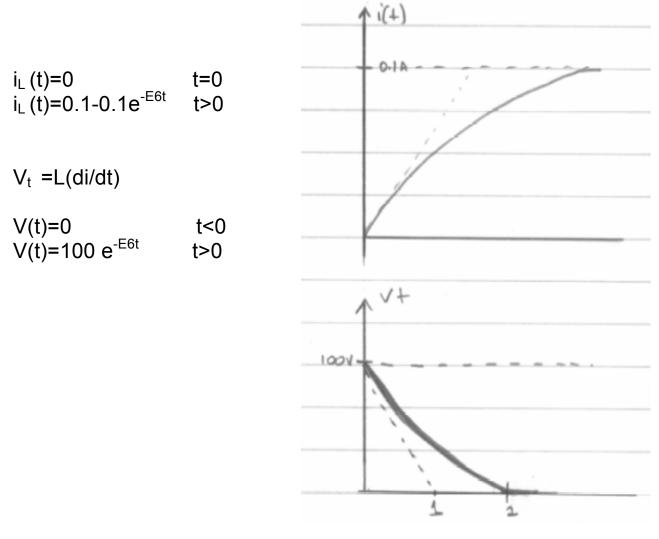
4.20

i1=0 i2=2A i3=2A

Equavlent circuit for Steady-state:

4.27

iR=2mA $V_R=L_R R=20V$ $V_c=V_R+15V=35V$


4.33

i_∟ (t=0)=0

$$i_{L}(t)=K1+K2e^{-Rt/L}$$
 V(t)=di(t)/dt

Page 7 of 8

- At t=0; i_L (t)=K1+K2=0
- At t=∞; i_L (t)=K1=0.1 K2=-K1=-0.1

Page 8 of 8