EE 100/42 Spring 2009

Solutions to Homework 5

A. 1 Complex number arithmetic:
a)

$$
\begin{aligned}
Z_{1}+Z_{2} & =(2+j 3)+(4-j 3) \\
& =6
\end{aligned}
$$

b)

$$
\begin{aligned}
Z_{1}-Z_{2} & =(2+j 3)-(4-j 3) \\
& =-2+j 6
\end{aligned}
$$

c)

$$
\begin{aligned}
Z_{1} Z_{2} & =(2+j 3)(4-j 3) \\
& =(8+9)+j(-6+12) \\
& =17+j 6
\end{aligned}
$$

d)

$$
\begin{aligned}
\frac{Z_{1}}{Z_{2}} & =\frac{2+j 3}{4-j 3}\left(\frac{4+j 3}{4+j 3}\right) \\
& =\frac{-1+j 18}{25}
\end{aligned}
$$

A. 7 More complex number arithmetic. The fact that $e^{j \theta}=\cos (\theta)+j \sin (\theta)$ will be used throughout this exercise.
a)

$$
\begin{aligned}
Z_{a} & =5+j 5+10 \angle 30^{\circ} \\
& =5+j 5+10\left(\cos \left(30^{\circ}\right)+j \sin \left(30^{\circ}\right)\right) \\
& =5+j 5+5 \sqrt{3}+j 5 \\
& =(5+5 \sqrt{3})+j 10
\end{aligned}
$$

b)

$$
\begin{aligned}
Z_{b} & =5 \angle 45^{\circ}-j 10 \\
& =5\left(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}}\right)-j 10 \\
& =\frac{5}{\sqrt{2}}+j\left(\frac{5}{\sqrt{2}}-10\right)
\end{aligned}
$$

c)

$$
\begin{aligned}
Z_{c} & =\frac{10 \angle 45^{\circ}}{3+j 4} \\
& =\frac{\left(\frac{10}{\sqrt{2}}+j \frac{10}{\sqrt{2}}\right)(3-j 4)}{(3+j 4)(3-j 4)} \\
& =\frac{70}{25 \sqrt{2}}-j \frac{10}{25 \sqrt{2}}
\end{aligned}
$$

d)

$$
\begin{aligned}
Z_{d} & =\frac{15}{5 \angle 90^{\circ}} \\
& =3 \angle-90^{\circ} \\
& =-j 3
\end{aligned}
$$

5.13 The rms value of the current is given by:

$$
i_{r m s}^{2}=\frac{1}{T} \int_{0}^{T} i(t)^{2} d t
$$

The integral may be easily calculated for the particular current values given in the graph. Notice that $T=4$.

$$
\begin{aligned}
i_{r m s}^{2} & =\frac{1}{4}\left[\int_{0}^{2}(2)^{2} d t+\int_{2}^{4}(-1)^{2} d t\right] \\
& =\frac{1}{4}(10) \\
& =\frac{10}{4}
\end{aligned}
$$

Taking the square root gives the answer:

$$
i_{r m s}=\frac{\sqrt{10}}{2}=1.581 \mathrm{~A}
$$

5.22 The angular frequency is $\omega=2 \pi f=400 \pi \mathrm{rad} / \mathrm{sec}$. The time-domain relationship may be recovered from phasor notation by the following formula:

$$
v(t)=\operatorname{Re}\left\{M e^{j(\omega t+\phi)}\right\}
$$

where the phasor is $\mathbf{V}=M e^{j \phi}$. This allows the easy recovery from the phasors given in the phasor diagram (note that the phase must be expressed in radians).

$$
\begin{aligned}
& v_{1}(t)=10 \cos \left(400 \pi t+\frac{\pi}{6}\right) \mathrm{V} \\
& v_{2}(t)=5 \cos \left(400 \pi t+\frac{5 \pi}{6}\right) \mathrm{V} \\
& v_{3}(t)=10 \cos \left(400 \pi t+\frac{\pi}{2}\right) \mathrm{V}
\end{aligned}
$$

The phase relationships are as follows:

- $v_{1}(t)$ lags $v_{2}(t)$ by $\frac{2 \pi}{3} \mathrm{rad}$.
- $v_{1}(t)$ lags $v_{3}(t)$ by $\frac{\pi}{3} \mathrm{rad}$.
- $v_{3}(t)$ lags $v_{2}(t)$ by $\frac{\pi}{3} \mathrm{rad}$.
5.26 From the figure, the following information can be found:
- Period $T=0.5 \mathrm{sec} . \Rightarrow \omega=4 \pi \mathrm{rad} / \mathrm{sec}$.
- Amplitude $V_{m}=3 \mathrm{~V}$.
- Phase $\phi=\frac{-0.0625}{T}(2 \pi)=-\frac{\pi}{4} \mathrm{rad}$.

Thus, the time-domain signal is

$$
v(t)=3 \cos \left(4 \pi t-\frac{\pi}{4}\right) \mathrm{V}
$$

The phasor for this signal can be constructed from the information above as:

$$
\mathbf{V}=3 e^{-j \frac{\pi}{4}} \mathrm{~V}
$$

Finally, the rms value of $v(t)$ may be computed from the formula given earlier. Recall that, for a sinusoid of period T and angular frequency $\frac{2 \pi}{T}, \int_{0}^{T} \cos ^{2}(\omega t) d t=\frac{T}{2}$.

$$
\begin{aligned}
v_{r m s} & =\sqrt{\frac{1}{0.5} \int_{0}^{0.5} v(t)^{2} d t} \\
& =\sqrt{\frac{1}{0.5} \frac{0.5}{2}(9)} \\
& =\frac{3}{\sqrt{2}} \mathrm{~V} \\
& =2.121 \mathrm{~V}
\end{aligned}
$$

5.40 For each frequency, $Z=Z_{L}+Z_{R}+Z_{C}$, where each subscript refers to the inductor, resistor, and capacitor, respectively. The expressions for each impedance are:

$$
\begin{aligned}
Z_{L} & =j \omega L \\
Z_{R} & =R \\
Z_{C} & =\frac{1}{j \omega C}
\end{aligned}
$$

a) $\omega=500$:

$$
\begin{aligned}
Z & =j 50+50-j 200=50-j 150 \\
& =158.1 e^{-j 1.249} \Omega
\end{aligned}
$$

b) $\omega=1000$:

$$
\begin{aligned}
Z & =j 100+50-j 100 \\
& =50 \Omega
\end{aligned}
$$

c) $\omega=2000$:

$$
\begin{aligned}
Z & =j 200+50-j 50=50+j 150 \\
& =158.1 e^{j 1.249} \Omega
\end{aligned}
$$

5.48 The phasor for the source current $i_{S}(t)$ can be found by inspection:

$$
\mathbf{I}_{S}=0.1 \mathrm{~A}
$$

By applying the governing equations (in phasor form) for the resistor $\mathbf{V}=\mathbf{I}_{R} R$ and the capacitor $\mathbf{I}_{C}=j \omega \mathbf{V}$, we can arrive at the following equation (using KCL):

$$
\begin{aligned}
\mathbf{I}_{S} & =\mathbf{I}_{R}+\mathbf{I}_{C} \\
& =\frac{\mathbf{V}}{R}+j \omega C \mathbf{V} \\
& =\left(\frac{1}{R}+j \omega C\right) \mathbf{V} \\
\Rightarrow \mathbf{V} & =\left(\frac{1}{R}+j \omega C\right)^{-1} \mathbf{I}_{S}
\end{aligned}
$$

Plugging in the values for the variables in the equation above yields the expression for the voltage phasor:

$$
\begin{aligned}
\mathbf{V} & =\left(\frac{1}{100}+j 0.5 \times 10^{-2}\right)^{-1} 0.1 \\
& =8.944 e^{-j 0.4636} \mathrm{~V}
\end{aligned}
$$

Now, the phasors for the current through the resistor and the capacitor may be found. Note that $j=e^{j \frac{\pi}{2}}$.

$$
\begin{aligned}
\mathbf{I}_{R} & =\frac{\mathbf{V}}{R}=\frac{8.944 e^{-j 0.4636}}{100} \\
& =0.0894 e^{-j 0.4636} \mathrm{~A} \\
\mathbf{I}_{C} & =j \omega C \mathbf{V}=10^{4}\left(0.5 \times 10^{-6}\right) e^{j\left(0.4636+\frac{\pi}{2}\right)} \\
& =44.72 e^{j 1.1072} \mathrm{~A}
\end{aligned}
$$

The phasor diagram is given in Figure 1. ${ }^{1}$
The phase relationship between \mathbf{V} and \mathbf{I}_{S} is that \mathbf{V} lags \mathbf{I}_{S} by 0.4636 rad .
5.53 The nodes are already labeled in the problem diagram. Since we are looking for node voltages, the nodal method will give us the answer right away. Since there is a current source, define the current flowing through the source as \mathbf{I}_{S}, in the direction of increasing potential according to the diagram drawing.

[^0]

Figure 1: Phasor diagram for Problem 5.48. It is not drawn to scale.

KCL at node 1:

$$
\frac{0-\mathbf{V}_{1}}{10}+\frac{0-\mathbf{V}_{1}}{j 20}+\mathbf{I}_{S}=0
$$

KCL at node 2:

$$
\frac{0-\mathbf{V}_{2}}{15}+\frac{0-\mathbf{V}_{2}}{-j 5}-\mathbf{I}_{S}=0
$$

Voltage source equation:

$$
\mathbf{V}_{1}-\mathbf{V}_{2}=10 \angle 0
$$

There are now three equations and three unknowns. The unknowns may be found by setting up and solving a system of equations.

$$
\left[\begin{array}{ccc}
-\frac{1}{10}-\frac{1}{j 20} & 0 & 1 \\
0 & -\frac{1}{15}+\frac{1}{j 5} & -1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{V}_{1} \\
\mathbf{V}_{2} \\
\mathbf{I}_{S}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
10
\end{array}\right]
$$

If the nodal equations were chosen correctly, then the 3×3 matrix above will be invertible. This allows the solution to be easily computed.

$$
\begin{aligned}
{\left[\begin{array}{c}
\mathbf{V}_{1} \\
\mathbf{V}_{2} \\
\mathbf{I}_{S}
\end{array}\right] } & =\left[\begin{array}{c}
8.1768+j 4.6409 \mathrm{~V} \\
-1.8232+j 4.6409 \mathrm{~V} \\
1.0497+j 0.0552 \mathrm{~A}
\end{array}\right] \\
& =\left[\begin{array}{c}
9.402 e^{j 0.5162} \mathrm{~V} \\
4.9862 e^{j 1.9451} \mathrm{~V} \\
1.0512 e^{j 0.0526} \mathrm{~A}
\end{array}\right]
\end{aligned}
$$

6.11 One way to find the value of a transfer function is to find the ratio of the output to the input in phasor form. The input phasor is

$$
\mathbf{V}_{i n}=2 e^{-j \frac{5}{36}} \mathrm{~V}
$$

while the output phasor is

$$
\mathbf{V}_{\text {out }}=2 e^{j \frac{1}{9}} \mathrm{~V}
$$

The transfer function at this particular frequency is

$$
\begin{aligned}
H\left(\omega=10^{4} \pi\right) & =\frac{\mathbf{V}_{\text {out }}}{\mathbf{V}_{\text {in }}} \\
& =\frac{2 e^{j \frac{1}{9}}}{2 e^{-j \frac{5}{36}}} \\
& =1 e^{j \frac{\pi}{4}}
\end{aligned}
$$

This answer can be found by inspection too. The magnification ratio between the input and output is 1 , and the output leads the input by $+45^{\circ}$.
6.24 The transfer function relating the input $v_{\text {in }}(t)$ to the output $v_{\text {out }}(t)$ can be found from simple circuit analysis. Defining the current flowing through the single loop as $i(t)$ we get:

$$
\mathbf{I}=j \omega C \mathbf{V}_{\text {out }}=\frac{\mathbf{V}_{\text {in }}}{Z}
$$

where Z is the equivalent impedance of the resistor and capacitor in series. Plugging in $Z=R+\frac{1}{j \omega C}$ allows us to solve for the transfer function.

$$
\begin{aligned}
H(\omega):=\frac{\mathbf{V}_{\text {out }}}{\mathbf{V}_{\text {in }}} & =\frac{1}{j \omega C} \frac{1}{R+\frac{1}{j \omega C}} \\
& =\frac{1}{1+j \omega R C} \\
& =\frac{1}{1+j \omega \frac{1 \times 10^{-3}}{\pi}}
\end{aligned}
$$

Now, we can find the output signal as from the following:

$$
\begin{aligned}
v_{\text {out }}(t) & =5|H(500 \pi)| \cos (500 \pi t+\angle H(500 \pi)) \\
& +5|H(1000 \pi)| \cos (1000 \pi t+\angle H(1000 \pi)) \\
& +5|H(2000 \pi)| \cos (2000 \pi t+\angle H(2000 \pi)) \mathrm{V}
\end{aligned}
$$

Evaluating the required values of $H(\omega)$ is straightforward from the transfer function.

$$
\begin{aligned}
H(500 \pi) & =\frac{1}{1+j 0.5} \\
& =0.8944 e^{-j 0.4637} \\
H(1000 \pi) & =\frac{1}{1+j} \\
& =0.7071 e^{-j \frac{\pi}{4}} \\
H(2000 \pi) & =\frac{1}{1+j 2} \\
& =0.4472 e^{-j 1.1071}
\end{aligned}
$$

The output can now be written as

$$
\begin{aligned}
v_{\text {out }}(t) & =4.472 \cos (500 \pi t-0.4637)+3.535 \cos \left(1000 \pi t-\frac{\pi}{4}\right) \\
& +2.236 \cos (2000 \pi t-1.1071) \mathrm{V}
\end{aligned}
$$

6.40 The definition of decibel is $M_{\mathrm{dB}}=20 \log _{10} M$, with an inverse given by $M=10^{\frac{M_{\mathrm{dB}}}{20}}$.
a) For $|H(f)|_{\mathrm{dB}}=-10 \mathrm{~dB}$,

$$
\begin{aligned}
|H(f)| & =10^{-\frac{10}{20}} \\
& =0.3162
\end{aligned}
$$

b) For $|H(f)|_{\mathrm{dB}}=10 \mathrm{~dB}$,

$$
\begin{aligned}
|H(f)| & =10^{\frac{10}{20}} \\
& =3.162
\end{aligned}
$$

[^0]: ${ }^{1}$ Image taken from the companion website for the book: http://wps.prenhall.com/wps/media/objects/4045/4142137/Chapter_05/ICE_Chapter_05.pdf.

