EE 100/42 Spring 2009
 Solutions to Homework 1

1.9

The positive reference for $V_{b a}$ is terminal b, where the head of arrow is pointing. Then, we have $\mathrm{V}_{\mathrm{ba}}=-\mathrm{V}=12 \mathrm{~V}$. Also, i is the current entering terminal a , and i_{ba} is the current leaving terminal a. Then, we have $\mathrm{i}=-\mathrm{i}_{\mathrm{ba}}=2 \mathrm{~A}$. Thus, current enters the positive reference and energy is being delivered to the device.

1.11

$$
\mathrm{i}(\mathrm{t})=\frac{\mathrm{dq}(\mathrm{t})}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}(2+3 \mathrm{t})=\mathbf{3} \mathbf{A}
$$

1.37

At the node joining elements A and B, we have $i a+i b=0$, thus, $i_{a}=-2 A$. For the node at the top end of element C, we have $i b+i c=3$. Thus, $i_{c}=1 A$. Finally, at the top right-hand corner node, we have $3+$ ie $=\mathrm{id}$. Thus, $\mathrm{id}=4 \mathrm{~A}$. Elements A and B are in series.

1.42

Summing voltages for the lower left-hand, we have $-5+\mathrm{Va}+10=0$, which yields $\mathrm{Va}=-5 \mathrm{~V}$. Then for the top-most loop, we have $\mathrm{Vc}-15-\mathrm{Va}=0$, which yields $\mathrm{Vc}=10 \mathrm{~V}$. Finally, writing KCL around the outside loop, we have $-5+\mathrm{Vc}+\mathrm{Vb}=0$, which yields $\mathrm{Vb}=-5 \mathrm{~V}$.
1.56

The power delivered to the resistor is

$$
p(t)=\frac{V^{2}(t)}{R}=2.5 * \exp (-4 t)
$$

and the energy delivered is

$$
\mathrm{w}=\int_{0}^{\infty} \mathrm{p}(\mathrm{t}) \mathrm{dt}=\int_{0}^{\infty} 2.5 \exp (-4 \mathrm{t}) \mathrm{dt}=\left[\frac{2.5 \exp (-4 \mathrm{t})}{-4}\right]_{0}^{\infty}=\frac{2.5}{4}=\mathbf{0 . 6 2 5 J}
$$

1.58

The equation for resistance is given as $R=\frac{p L}{A}$
a. If the length of the wire is doubled, then resistance will be doubled to $\mathbf{1} \mathbf{~ o h m}$.
b. If the diameter of the wire is doubled, then cross sectional area A is increased by a factor of 4 . The resistance will be decreased by a factor of $\mathbf{4}$ to $\mathbf{0 . 1 2 5}$ ohm.

1.63

This is a parallel circuit and the voltage across each element is 10 V positive at the top end. Thus, the current flows through the resistor is

$$
\mathrm{i}_{\mathrm{R}}=\frac{10 \mathrm{~V}}{5 \Omega}=2 \mathrm{~A}
$$

Applying KCL, we find that the current flows through the voltage source are 0 . Computing power for each element, we have

$$
\mathrm{P}_{\text {current-source }}=-20 \mathrm{~W}
$$

Thus, the current source delivers power.

$$
\begin{gathered}
P_{R}=\left(i_{R}\right)^{2} R=20 W \\
P_{\text {voltage-source }}=0
\end{gathered}
$$

2.1

The approach for this problem to find the equivalent resistance from the right most ones first.
(a)
$\frac{1}{\frac{1}{12}+\frac{1}{24}}=8 \mathrm{ohm}$ the 12 and 24 ohm resistors are in parallel, we replace with Req1.
$8+3+4=15$ ohm the 3, 4 and Req1 are in series, we replace with Req2.
$\frac{1}{\frac{1}{15}+\frac{1}{30}}=10$ ohm \quad Req2 is in parallel with the 30 ohm resistor, we replace with Req3.
$10+3+7=\mathbf{2 0} \mathbf{~ o h m}$ the final equivalent resistance is sum of Req3, the 3 and 7 ohm resistors.
(b)

$$
\begin{aligned}
& \frac{1}{\frac{1}{60}+\frac{1}{15}}=12 \mathrm{ohm} \\
& 12+6=18 \mathrm{ohm}
\end{aligned}
$$

$\frac{1}{\frac{1}{9}+\frac{1}{18}}=6 \mathrm{ohm}$
$6+6=12 \mathrm{ohm}$
$\frac{1}{\frac{1}{12}+\frac{1}{24}}=8 \mathrm{ohm}$
$10+8+5=\mathbf{2 3} \mathbf{~ o h m}$
2.3
(a)

$$
\frac{1}{\frac{1}{20+30}+\frac{1}{30+20}}=\mathbf{2 5} \mathbf{~ o h m}
$$

(b)

$$
\frac{1}{\frac{1}{20}+\frac{1}{30}} \| \frac{1}{\frac{1}{30}+\frac{1}{20}}=\mathbf{2 4 ~ o h m}
$$

2.36

$$
\begin{aligned}
& \mathrm{V} 1=\frac{\mathrm{R} 1}{\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3} * \mathrm{~V}=\mathbf{5 V} \\
& \mathrm{V} 2=\frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3} * \mathrm{~V} s=\mathbf{7 V} \\
& \mathrm{V} 3=\frac{\mathrm{R} 3}{\mathrm{R} 1+\mathrm{R} 2+\mathrm{R} 3} * \mathrm{Vs}=\mathbf{1 3 V}
\end{aligned}
$$

2.44

$$
\mathrm{i}_{3}=\frac{\mathrm{R} 2}{\mathrm{R} 2+\mathrm{R} 3} * \mathrm{i}_{\mathrm{s}}=\frac{15}{15+5} * 8=\mathbf{6 A}
$$

