UNIVERSITY OF CALIFORNIA, BERKELEY **Department of Electrical Engineering and Computer Sciences**

EE 100/EE 42 Intro. To Electronics Engineering

Summer 2005 Bharath "Bart Simpson" Muthuswamy

FINAL August 12th 2005 Time Allotted: 3 hours

NAME:		•	
(print)	Last	First	
STUDENT ID	#:		
I WILL NOT	CHEAT ON THIS EXAM	. Signature:	
Note(s):			

- N
 - 1. You will receive [3 pts] for filling out the information above.
 - 2. MAKE SURE THE EXAM HAS 10 NUMBERED PAGES.
 - 3. This is a CLOSED BOOK exam. However, you may use THREE 8.5 x 11" of notes (both sides) and a calculator.
 - 4. SHOW YOUR WORK on this exam. MAKE YOUR METHODS CLEAR TO THE GRADER so you can receive partial credit.
 - 5. WRITE ANSWERS CLEARLY IN THE SPACES (lines or boxes) PROVIDED.
 - 6. Remember to specify units on answers whenever appropriate.
 - 7. If you are asked to setup equation(s) only, do NOT attempt to solve the equation(s).

SCORE:	This page:/ 3	
	1:	/ 22
	2:	/ 25
	3:	/ 25
	4:	/25
	TOTAL:	/ 100

Problem 1 Diodes (22 points)

In the circuit below, assume both diodes are ideal. Find I and V1.

Problem 1 EXTRA WORKSPACE

Problem 2 NMOS FETs (25 points)

In the circuit below, which elements are absorbing and which elements are releasing power? Specify how much power an element is absorbing or releasing. Use $VT0=1\ V$ and $KP=50\ uA/V^2$ for the NMOS.

Power Absorbed or Delivered by Elements

NMOS:	
Current Source:	
Voltage Source:	

Problem 2 EXTRA WORKSPACE

PROBLEM 3 Cascaded Opamps (25 points)

In the circuit below, find V1 and V2. **DO NOT IGNORE THE EFFECTS OF THE OPAMP RAIL VOLTAGES!**

V1 = _____ V2 = ____

Problem 3 EXTRA WORKSPACE

PROBLEM 4 Nonlinear Circuit Analysis (25 points)

Suppose you are given the following circuit:

The i-v relationship of the non-linear circuit is shown below:

(Note: the parabolic portion is not drawn to scale, but the equations are valid.)

- a.) Sketch the dynamic route, label all equilibrium points, and describe them as stable or unstable.
- b.) Given that $v_c(0) = 4V$ and $i_c(0) = -4mA$, how long (in milliseconds) does the current remain constant? If the current is never constant, then explain why.
- c.) Using the same initial conditions, how long (in milliseconds) does it take for the voltage to reach 0.01V?

T1 (for constant current) =	
T2 (for voltage to reach 0.01 V) =

Problem 4 EXTRA WORKSPACE

EVEN MORE EXTRA WORKSPACE