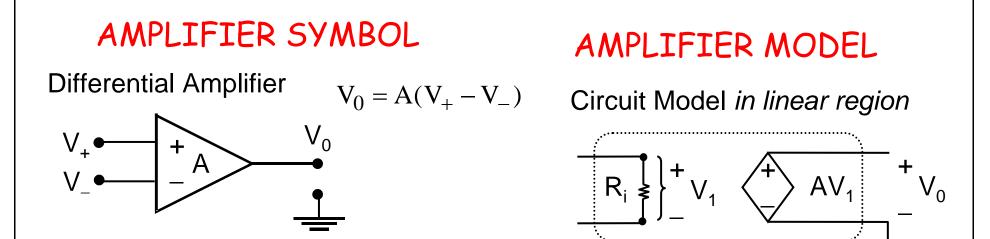
Chapter 5

- OUTLINE
 - Op-Amp from 2-Port Blocks
 - Op-Amp Model and its Idealization
 - Negative Feedback for Stability
 - Components around Op-Amp define the Circuit Function

The Operational Amplifier

- The operational amplifier ("op amp") is a basic building block used in analog circuits.
 - Its behavior is modeled using a dependent source.
 - When combined with resistors, capacitors, and inductors, it can perform various useful functions:
 - amplification/scaling of an input signal
 - sign changing (inversion) of an input signal
 - addition of multiple input signals
 - subtraction of one input signal from another
 - integration (over time) of an input signal
 - differentiation (with respect to time) of an input signal
 - analog filtering
 - nonlinear functions like exponential, log, sqrt, etc
 - Isolate input from output; allow cascading

High Quality Dependent Source In an Amplifier



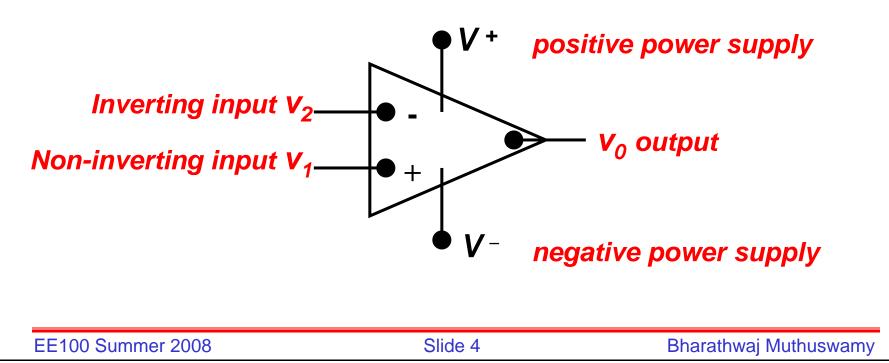
 V_0 depends only on input $(V_+ - V_-)$

See the utility of this: this Model when used correctly mimics the behavior of an amplifier but omits the complication of the many many transistors and other components.

EE100 Summer 2008

Op Amp Terminals

- 3 signal terminals: 2 inputs and 1 output
- IC op amps have 2 additional terminals for DC power supplies
- Common-mode signal= $(v_1+v_2)/2$
- Differential signal = $v_1 v_2$



Model for Internal Operation

- A is differential gain or open loop gain
- Ideal op amp

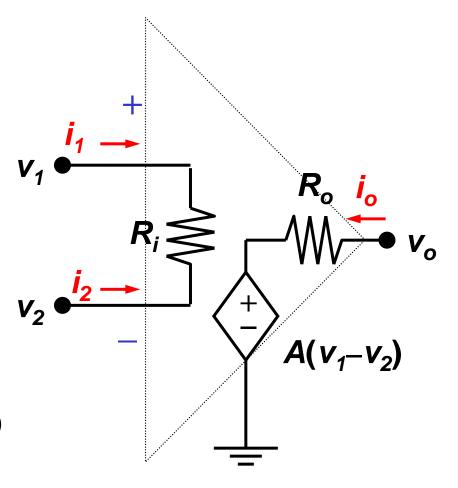
$$A \to \infty$$
$$R_i \to \infty$$
$$R_o = 0$$

$$v_{cm} = \frac{(v_1 + v_2)}{2}$$
, $v_d = v_1 - v_2$

$$v_o = A_{cm}v_{cm} + A_dv_d$$

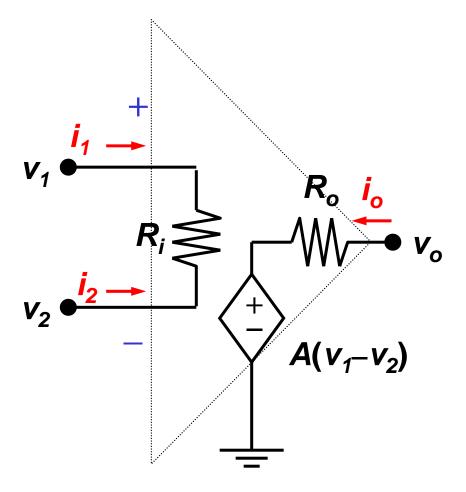
Since $v_o = A(v_1 - v_2)$, $A_{cm} = 0$

• Circuit Model



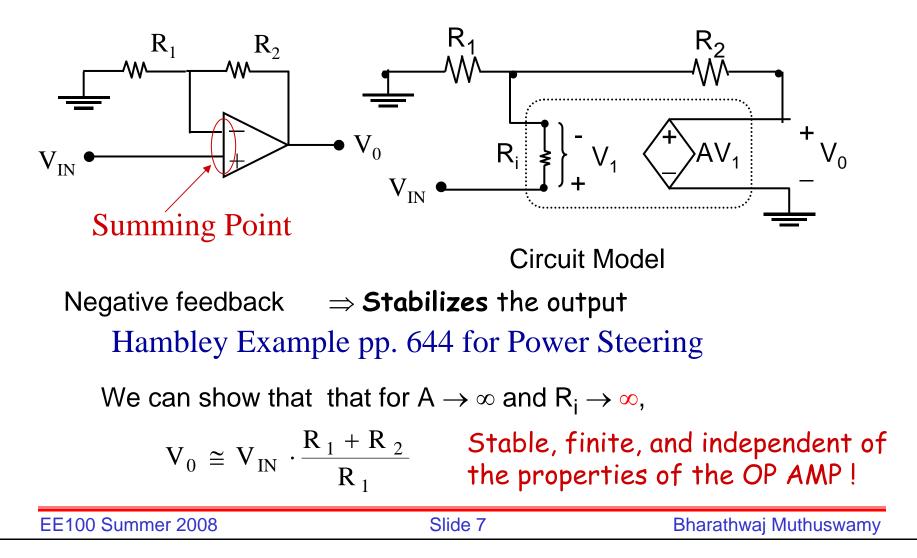
Model and Feedback

- Negative feedback
 - connecting the output port to the negative input (port 2)
- Positive feedback
 - connecting the output port to the positive input (port 1)
- Input impedance: R looking into the input terminals
- Output impedance: Impedance in series with the output terminals



Op-Amp and Use of Feedback

A very high-gain differential amplifier can function in an extremely linear fashion as an operational amplifier by using negative feedback.



Summing-Point Constraint

- Check if under negative feedback
 - Small v_i result in large v_o
 - Output v_{o} is connected to the inverting input to reduce v_{i}
 - Resulting in $v_i=0$
- Summing-point constraint

$$-v_1 = v_2$$

 $-i_1 = i_2 = 0$

- Virtual short circuit
 - Not only voltage drop is 0 (which is short circuit), input current is 0
 - This is different from short circuit, hence called "virtual" short circuit.

Ideal Op-Amp Analysis Technique

Applies only when Negative Feedback is present in circuit!

Assumption 1: The potential between the op-amp input terminals, $v_{(+)} - v_{(-)}$, equals zero.

Assumption 2: The currents flowing into the op-amp's two input terminals both equal zero.

No Currents

R₁ R₂ No Potential Difference

EXAMPLE

 V_{IN}

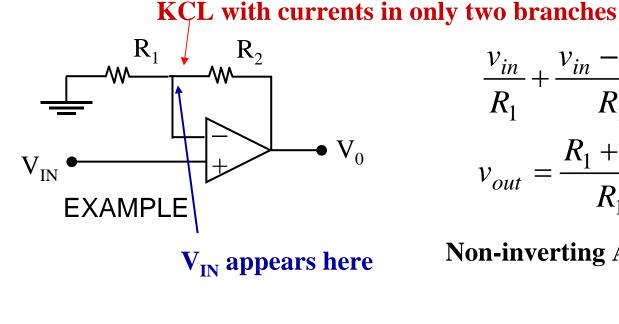
 V_0

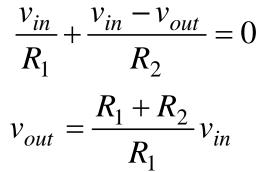
Ideal Op-Analysis: Non-Inverting Amplifier

Yes Negative Feedback is present in this circuit!

Assumption 1: The potential between the op-amp input terminals, $v_{(+)}$ – $v_{(-)}$, equals zero.

Assumption 2: The currents flowing into the op-amp's two input terminals both equal zero.

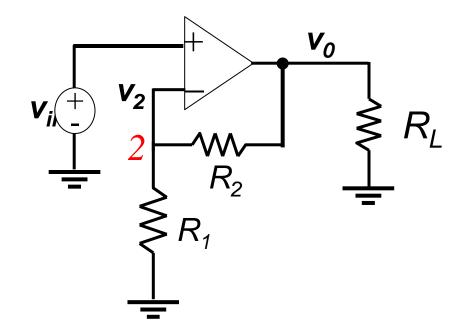




Non-inverting Amplifier

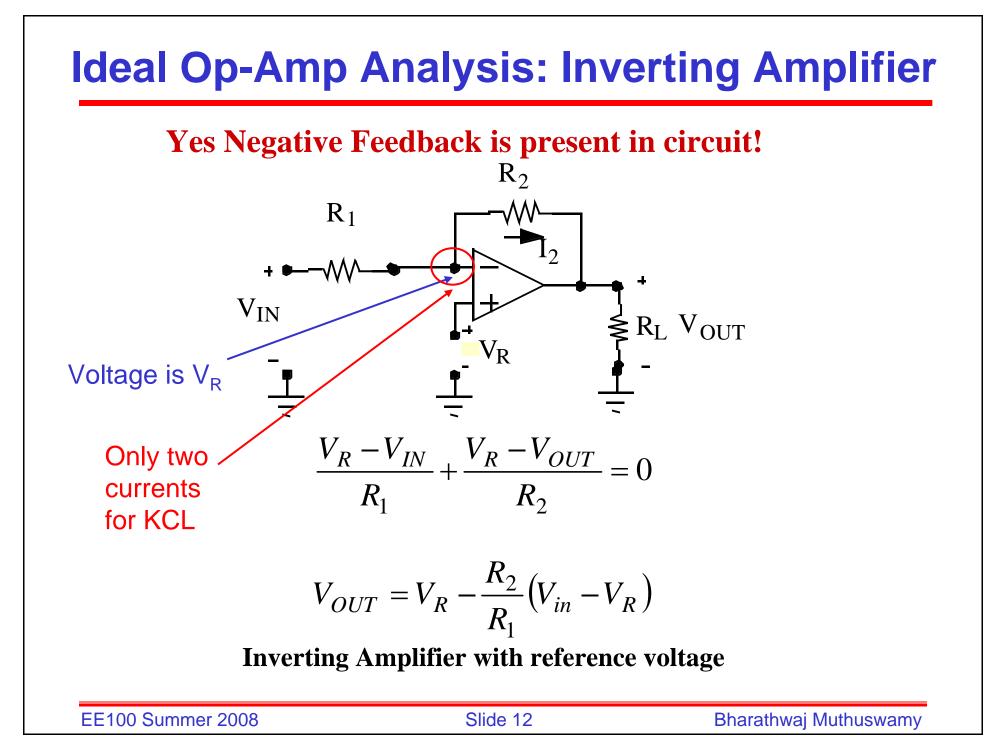
Non-Inverting Amplifier

• Ideal voltage amplifier



Closed loop
$$gain = A_v = \frac{v_o}{v_{in}}$$

 $v_1 = v_2 = v_{in}$, $i_1 = i_2 = 0$
Use KCL At Node 2.
 $i = \frac{(v_0 - v_2)}{R_2} = \frac{(v_2 - 0)}{R_1}$
 $A = \frac{v_o}{v_{in}} = \frac{(R_1 + R_2)}{R_1}$
Input impedance $= \frac{v_{in}}{i} \rightarrow \infty$



Inverting Amplifier

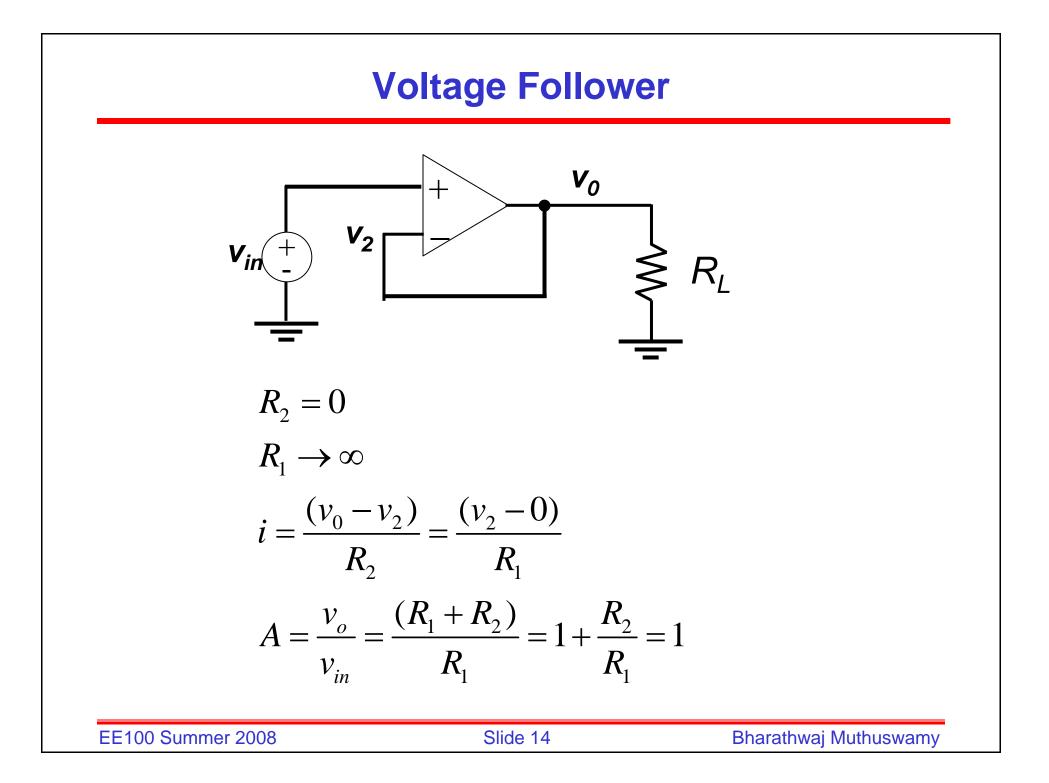
- Negative feedback → checked
- Use summing-point constraint

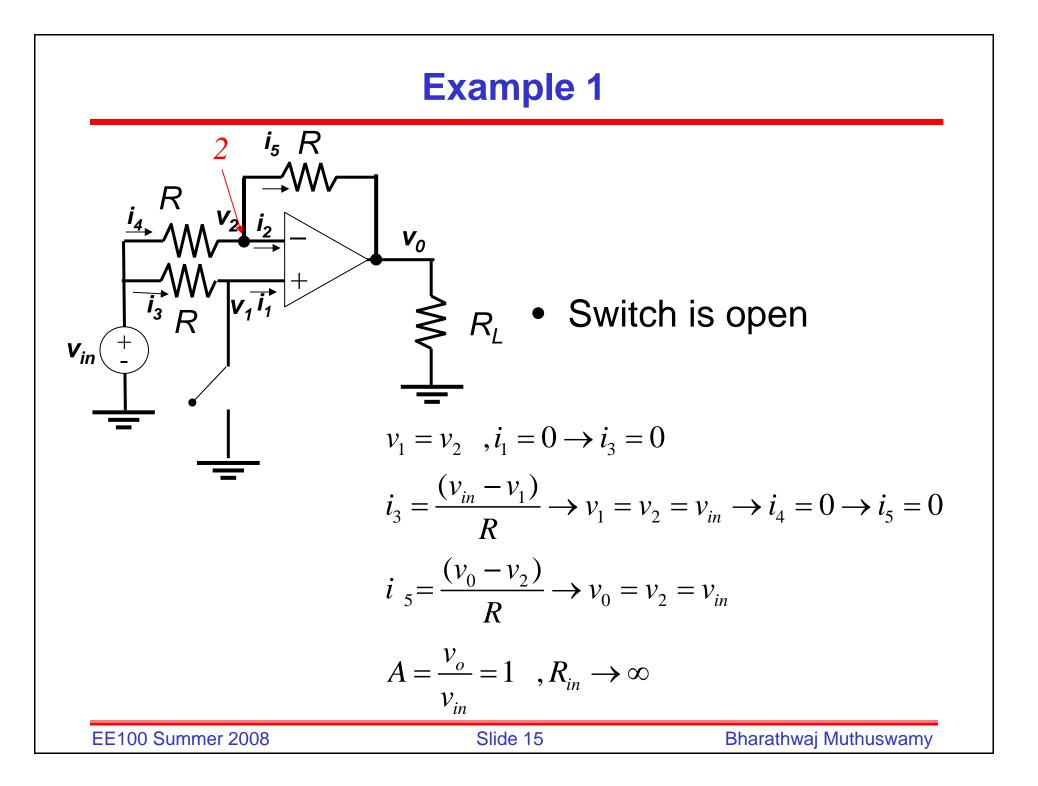
Closed loop $gain = A_v = \frac{v_o}{v_o}$ $v_1 = v_2 = 0$, $i_1 = i_2 = 0$ Use KCL At Node 2. $i = \frac{(v_{in} - v_2)}{R_1} = \frac{(v_{out} - v_2)}{R_2}$ $v_o = -\frac{R_2 v_o}{R_1}$ R_{l}^{Input} impedance $= \frac{V_{in}}{i} = R_{1}$

Ideal voltage source – independent of load resistor

V₀

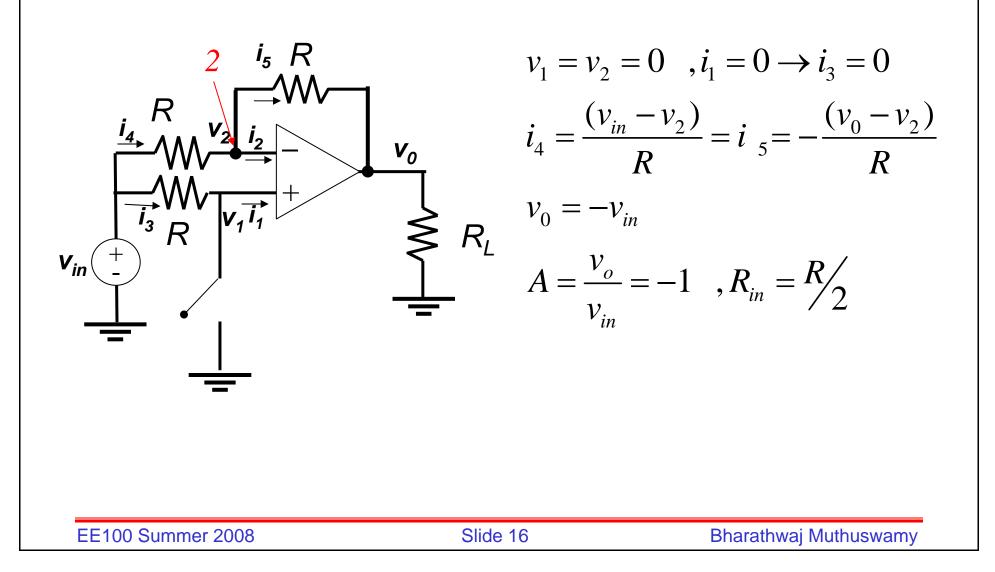
Vin





Example 1

• Switch is closed



Example 2

- Design an analog front end circuit to an instrument system V_{in}
 - Requires to work with 3 full-scale of input signals (by manual switch):
 0 ~ ±1,0 ~ ±10,0 ~ ±100 V
 - For each input range, the output needs to be $0 \sim \pm 10$ V
 - The input resistance is $1M\Omega$

$$v_{o} = (1 + \frac{R_{2}}{R_{1}})v_{1}$$

$$v_{1} = v_{in} \quad Switch \quad at \quad c$$

$$v_{1} = \frac{R_{a} + R_{b}}{R_{a} + R_{b} + R_{c}}v_{in} \quad Switch \quad at \quad b$$

$$v_{1} = \frac{R_{a}}{R_{a} + R_{b} + R_{c}}v_{in} \quad Switch \quad at \quad a$$

EE100 Summer 2008

V₁

 V_2

 R_2

 R_1

b

а

V_b

Va

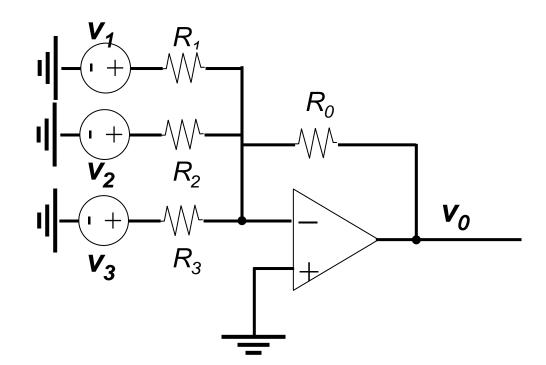
V_

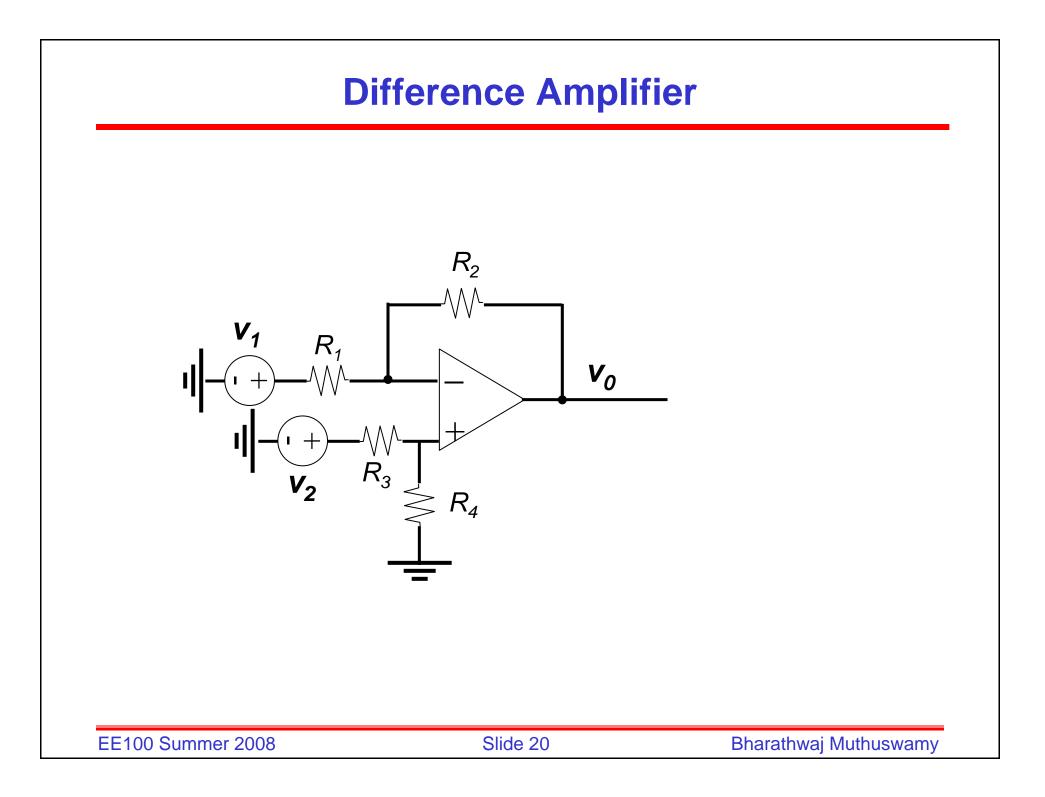
R

Example 2 (cont'd)

$$\begin{split} R_{in} &= R_a + R_b + R_c = 1M\Omega \\ Max \; A_v &= 10 = (1 + \frac{R_2}{R_1}) \quad Switch \ at \ c \\ A_v &= 1 = \frac{R_a + R_b}{R_a + R_b + R_c} (1 + \frac{R_2}{R_1}) \quad Switch \ at \ b \therefore \frac{R_a + R_b}{R_a + R_b + R_c} = 0.1 \\ A_v &= 0.1 = \frac{R_a}{R_a + R_b + R_c} (1 + \frac{R_2}{R_1}) \quad Switch \ at \ a \therefore \frac{R_a}{R_a + R_b + R_c} = 0.01 \\ \therefore \; R_a &= 10k\Omega, R_b = 90k\Omega, R_c = 900k\Omega \\ R_2 &= 9R_1 \end{split}$$

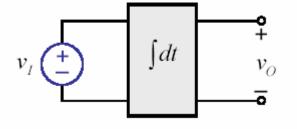
Summing Amplifier



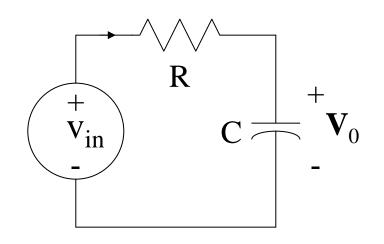


Integrator

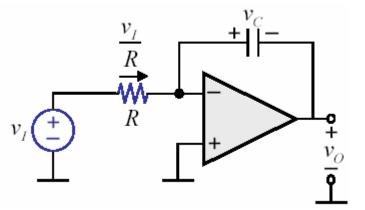
• Want
$$v_o = K \int v_{in} dt$$



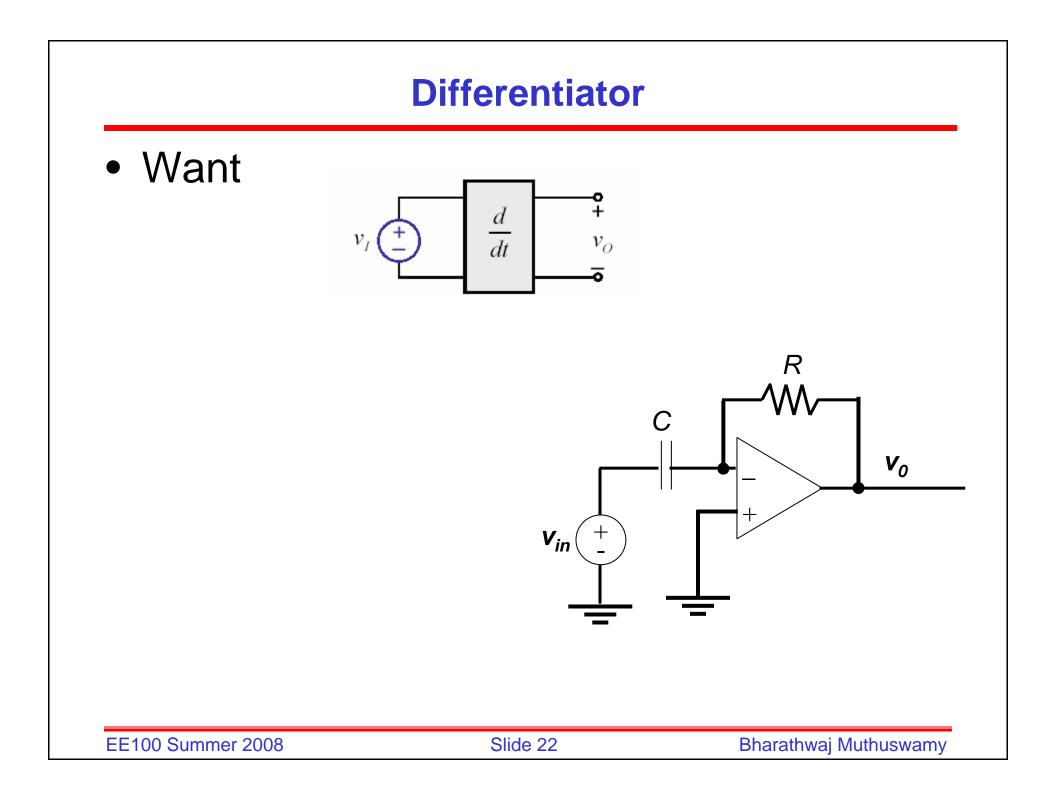
• What is the difference between:

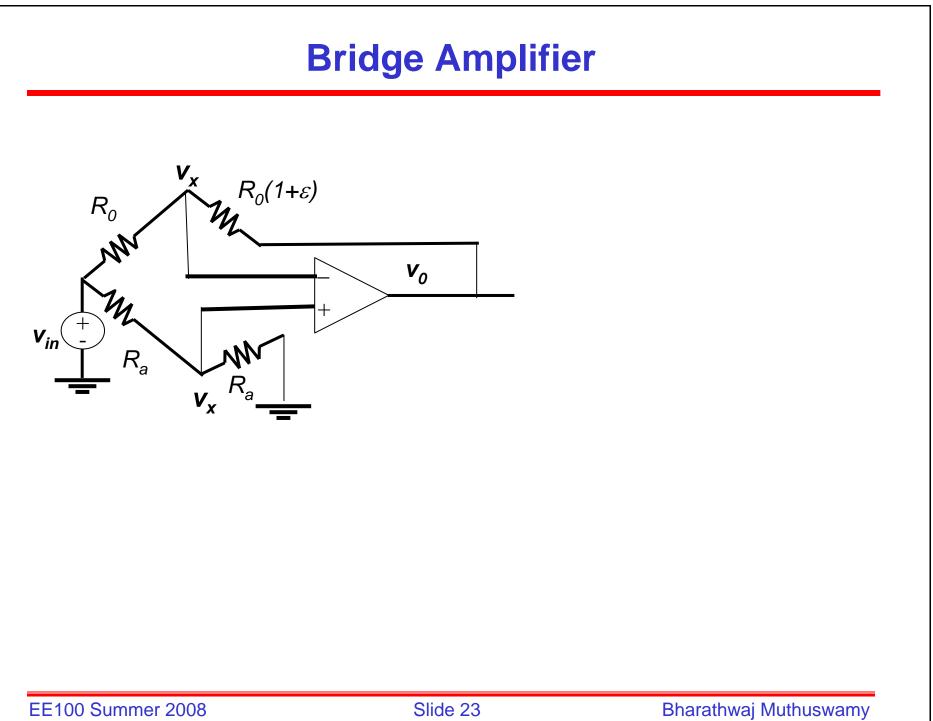


$$v_{O} \approx \frac{1}{RC} \int_{-\infty}^{t} v_{I} dt$$

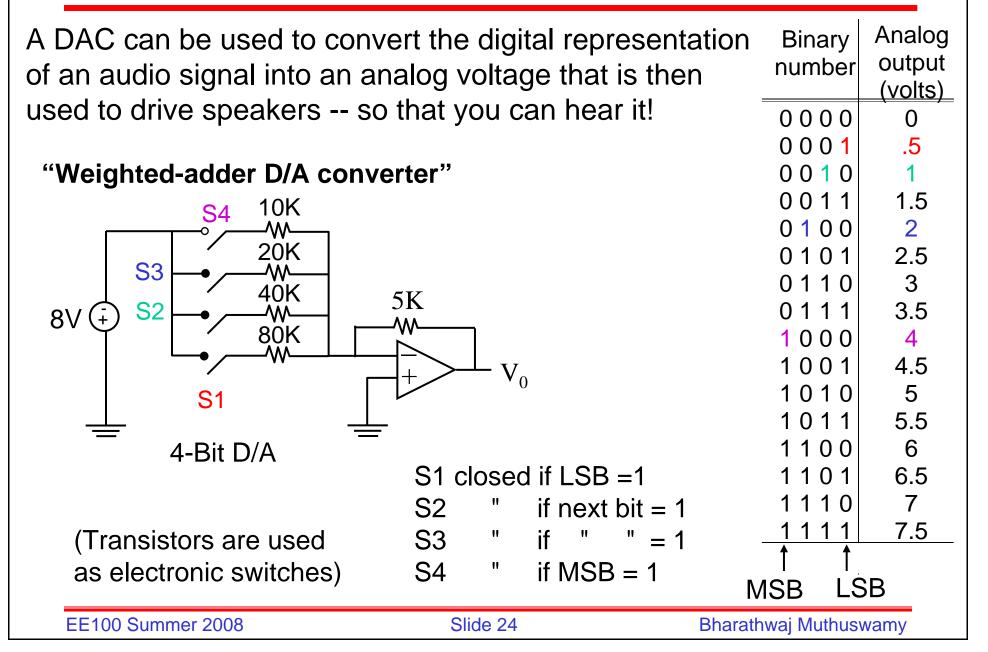


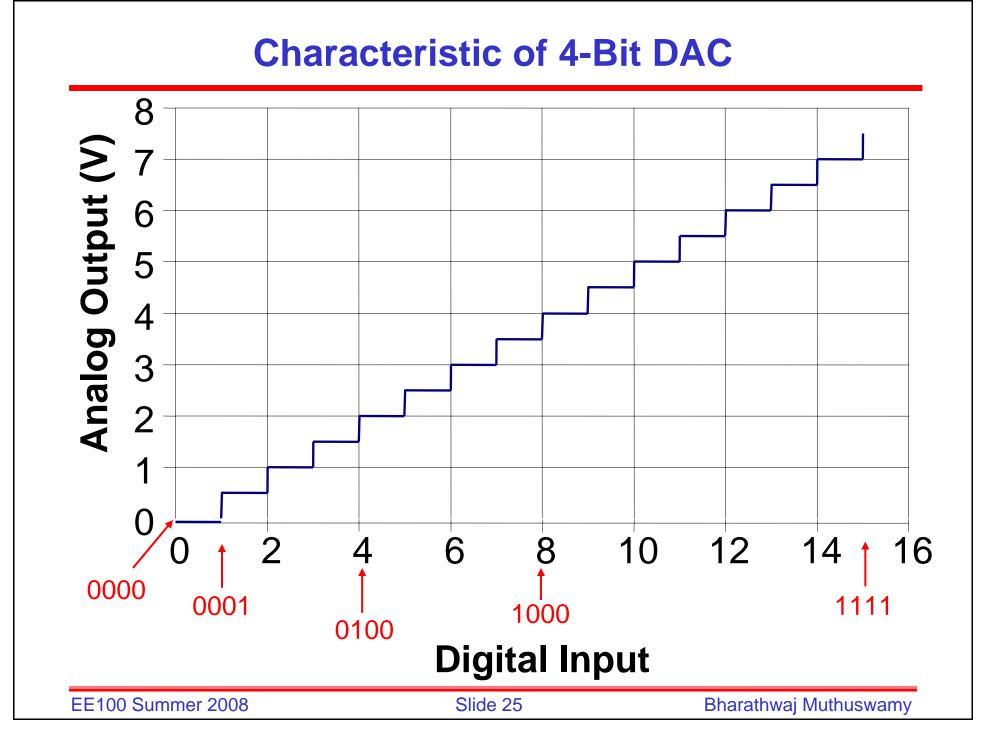
$$v_O = -\frac{1}{C} \int_{-\infty}^{t} \frac{v_I}{R} dt$$





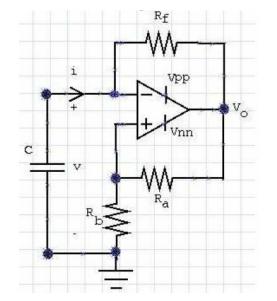
Application: Digital-to-Analog Conversion





Nonlinear Opamp Circuits

- Start reading through online notes: "Introduction to nonlinear circuit analysis".
- Outline:
 - Differences between positive and negative feedback.
 - Oscillator circuit.



Slide 26